Volume 17, Issue 1, Pages (January 2010)

Slides:



Advertisements
Similar presentations
Volume 14, Issue 6, Pages (June 2007)
Advertisements

Javed A. Khan, Ben M. Dunn, Liang Tong  Structure 
RNA-Catalyzed RNA Ligation on an External RNA Template
Matthew D. Disney, Peter H. Seeberger  Chemistry & Biology 
Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene
Volume 135, Issue 3, Pages (October 2008)
Volume 35, Issue 4, Pages (August 2009)
Volume 13, Issue 4, Pages (April 2006)
Finn Werner, Robert O.J Weinzierl  Molecular Cell 
Purusharth Rajyaguru, Meipei She, Roy Parker  Molecular Cell 
Daniel Chi-Hong Lin, Alan D Grossman  Cell 
Jayson L. Bowers, John C.W. Randell, Shuyan Chen, Stephen P. Bell 
Volume 14, Issue 2, Pages (February 2007)
Laura Lancaster, Harry F. Noller  Molecular Cell 
Homologous Recombination Rescues Mismatch-Repair-Dependent Cytotoxicity of SN1- Type Methylating Agents in S. cerevisiae  Petr Cejka, Nina Mojas, Ludovic.
Volume 36, Issue 2, Pages (October 2009)
Volume 13, Issue 11, Pages (November 2006)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Volume 45, Issue 3, Pages (February 2012)
Volume 28, Issue 1, Pages (October 2007)
Factor Va Increases the Affinity of Factor Xa for Prothrombin
John T. Arigo, Kristina L. Carroll, Jessica M. Ames, Jeffry L. Corden 
Volume 15, Issue 8, Pages (August 2008)
Volume 127, Issue 1, Pages (October 2006)
Gracjan Michlewski, Sonia Guil, Colin A. Semple, Javier F. Cáceres 
Interaction with PCNA Is Essential for Yeast DNA Polymerase η Function
Volume 23, Issue 3, Pages (March 2016)
Functional Dissection of sRNA Translational Regulators by Nonhomologous Random Recombination and In Vivo Selection  Jane M. Liu, Joshua A. Bittker, Maria.
Volume 22, Issue 2, Pages (April 2006)
Volume 18, Issue 1, Pages (January 2011)
Volume 12, Issue 1, Pages (January 2005)
Beena Krishnan, Lila M. Gierasch  Chemistry & Biology 
Active site labeling of the gentamicin resistance enzyme AAC(6′)-APH(2″) by the lipid kinase inhibitor wortmannin  David D. Boehr, William S. Lane, Gerard.
Volume 17, Issue 1, Pages (January 2010)
Volume 66, Issue 5, Pages e4 (June 2017)
Volume 18, Issue 6, Pages (June 2011)
Volume 16, Issue 4, Pages (April 2009)
Volume 89, Issue 6, Pages (June 1997)
Volume 13, Issue 3, Pages (March 2006)
Volume 16, Issue 2, Pages (February 2009)
Volume 25, Issue 21, Pages (November 2015)
RNA Quadruplex-Based Modulation of Gene Expression
The Actin-Bundling Protein Palladin Is an Akt1-Specific Substrate that Regulates Breast Cancer Cell Migration  Y. Rebecca Chin, Alex Toker  Molecular.
Michelle N Arbeitman, David S Hogness  Cell 
Volume 16, Issue 4, Pages (October 2014)
Jinki Yeom, Kyle J. Wayne, Eduardo A. Groisman  Molecular Cell 
Volume 96, Issue 3, Pages (February 1999)
Andrei Kuzmichev, Thomas Jenuwein, Paul Tempst, Danny Reinberg 
Yi Tang, Jianyuan Luo, Wenzhu Zhang, Wei Gu  Molecular Cell 
DNA-Induced Switch from Independent to Sequential dTTP Hydrolysis in the Bacteriophage T7 DNA Helicase  Donald J. Crampton, Sourav Mukherjee, Charles.
A General Framework for Inhibitor Resistance in Protein Kinases
Volume 14, Issue 6, Pages (June 2007)
Protein Kinase D Inhibitors Uncouple Phosphorylation from Activity by Promoting Agonist-Dependent Activation Loop Phosphorylation  Maya T. Kunkel, Alexandra C.
Christopher W. Carroll, Maria Enquist-Newman, David O. Morgan 
Volume 15, Issue 7, Pages (July 2008)
Pratistha Ranjitkar, Amanda M. Brock, Dustin J. Maly 
Ligand-Regulated Peptides: A General Approach for Modulating Protein-Peptide Interactions with Small Molecules  Brock F. Binkowski, Russell A. Miller,
Rodney P. DeKoter, Hyun-Jun Lee, Harinder Singh  Immunity 
Analyzing Fission Yeast Multidrug Resistance Mechanisms to Develop a Genetically Tractable Model System for Chemical Biology  Shigehiro A. Kawashima,
Discovery of Antagonist Peptides against Bacterial Helicase-Primase Interaction in B. stearothermophilus by Reverse Yeast Three-Hybrid  Laurence Gardiner,
Volume 18, Issue 12, Pages (December 2011)
Ali Sadeghi-Khomami, Michael D. Lumsden, David L. Jakeman 
Volume 10, Issue 4, Pages (October 2002)
RNA-Catalyzed RNA Ligation on an External RNA Template
Feng Xu, Qiongyi Zhang, Kangling Zhang, Wei Xie, Michael Grunstein 
Matthew D. Disney, Peter H. Seeberger  Chemistry & Biology 
Volume 37, Issue 2, Pages (January 2010)
Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene
Volume 87, Issue 5, Pages (November 1996)
Competition between the ATPase Prp5 and Branch Region-U2 snRNA Pairing Modulates the Fidelity of Spliceosome Assembly  Yong-Zhen Xu, Charles C. Query 
Presentation transcript:

Volume 17, Issue 1, Pages 86-97 (January 2010) Methionine Aminopeptidases from Mycobacterium tuberculosis as Novel Antimycobacterial Targets  Omonike Olaleye, Tirumalai R. Raghunand, Shridhar Bhat, Jian He, Sandeep Tyagi, Gyanu Lamichhane, Peihua Gu, Jiangbing Zhou, Ying Zhang, Jacques Grosset, William R. Bishai, Jun O. Liu  Chemistry & Biology  Volume 17, Issue 1, Pages 86-97 (January 2010) DOI: 10.1016/j.chembiol.2009.12.014 Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 1 Sequence Comparison of MtMetAP1a, MtMetAP1c, HsMetAP1 and EcMetAP1 The alignment was generated using ClustalW (www.ebi.ac.uk). Both MtMetAPs share a 33% similarity, and the metal-chelating residues necessary for catalysis are conserved (∗). MtMetAP1a and EcMetAP1 lack the N-terminal extension with a PXXPXP motif present in MtMetAP1c AND HsMetAP1 (underlined). Chemistry & Biology 2010 17, 86-97DOI: (10.1016/j.chembiol.2009.12.014) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 2 Purification and Kinetic Characterization of Recombinant MetAPs from M. tuberculosis The recombinant MtMetAP1s were overexpressed in E. coli BL21 cells and purified by affinity chromatography as described in Experimental Procedures. (A) PolyHis-tagged-MtMetAP1c (∼32 kDa). (B) PolyHis-tagged-MtMetAP1a (∼28 kDa). Lane 1, Molecular weight marker; lane 2, uninduced whole cell lysate; lane 3, induced cell lysate; and lane 4, purified polyHis-tagged MtMetAP1. The gel was stained with Coomassie blue. (C) Velocity versus substrate concentration plot for MtMetAP1a (triangles) and MtMetAP1c (squares). The kinetic constants were obtained by measuring enzyme activity at different substrate concentrations. The reactions were performed in 96-well plates at room temperature and monitored at 405 nm on a UV-Vis spectrophotometer. The total volume of reaction was 100 μl (each reaction contains 40 mM HEPES [pH 7.5], 100 mM NaCl, 1 μM CoCl2, 100 μg/mL BSA, 0.1 U/mL ProAP, and 0-800 μM Met-Pro-pNA), 334 nM MtMetAP1c, and 3.29 μM MtMetAP1a, respectively. The background hydrolysis was corrected. The data were from quadruplet experiments and were fitted against the Michealis-Menten equation: V = Vmax × [S] / (Km + [S]), using the Graphpad prism software for one-site binding hyperbola. Chemistry & Biology 2010 17, 86-97DOI: (10.1016/j.chembiol.2009.12.014) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 3 Overexpression of MtMetAP1a and MtMetAP1c Confers Resistance to Inhibitors (A) Schematic representation of plasmids used for target validation. (i) Control plasmid pSCW35ΔsigF; (ii) sense construct: pSCW35ΔsigF-(MtMetAP1); and (iii) anti-sense construct: pSCW35ΔsigF-(α-MtMetAP1). The MtMetAP genes were inserted downstream of the acetamide regulated promoter (Pace). (B and C) The expression of MtMetAP1a and MtMetAP1c mRNA in M. tuberculosis as determined by quantitative RT-PCR. The levels of MtMetAP1a and MtMetAP1c were determined in M. tuberculosis strains transformed with vectors overexpressing the two genes in the sense (A-ii) and antisense (A-iii) orientation, respectively. The quantities of mRNA are shown as fold change compared to the expression in the wild-type with standard error from two independent experiments. Chemistry & Biology 2010 17, 86-97DOI: (10.1016/j.chembiol.2009.12.014) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 4 Target Validation of Naphthoquinone In Vivo M. tuberculosis knock-in strains containing MtMetAP1a, MtMetAP1c, or control expression plasmid were grown in liquid media in the presence (A) or absence (B) of 10 μg/mL compound 4 and DMSO. Symbols: MtMetAP1a, diamonds; MtMetAP1c, squares; wild-type strain, stars; and sigma factor-F lacking mutant, triangles. Chemistry & Biology 2010 17, 86-97DOI: (10.1016/j.chembiol.2009.12.014) Copyright © 2010 Elsevier Ltd Terms and Conditions