A Flexible Supercapacitor with High True Performance

Slides:



Advertisements
Similar presentations
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Advertisements

Volume 24, Issue 10, Pages e3 (October 2017)
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 3/3/2018 Copyright © ASME. All rights reserved.
Volume 2, Issue 2, Pages (February 2018)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 2, Pages (October 2017)
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Prussian Blue Analogs for Rechargeable Batteries
On the Electrolytic Stability of Iron-Nickel Oxides
Volume 2, Issue 2, Pages (February 2017)
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu2ZnSnS4  Jie Ge, Yanfa Yan  iScience 
Volume 7, Pages (September 2018)
Volume 3, Issue 5, Pages (November 2017)
Volume 8, Pages (October 2018)
Molecular Therapy - Nucleic Acids
Zhizhang Yuan, Yinqi Duan, Tao Liu, Huamin Zhang, Xianfeng Li
Volume 2, Issue 2, Pages (February 2018)
Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting  Guorui Cai, Wang Zhang, Long Jiao, Shu-Hong.
Mesoporous Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage  Wei Zhang, Lianhai Zu, Biao Kong, Bingjie Chen, Haili.
Volume 26, Issue 7, Pages (April 2016)
A Barbeque-Analog Route to Carbonize Moldy Bread for Efficient Steam Generation  Yaoxin Zhang, Sai Kishore Ravi, Jayraj Vinubhai Vaghasiya, Swee Ching.
Wei Wen, Jin-Ming Wu, Yin-Zhu Jiang, Lu-Lu Lai, Jian Song  Chem 
Jeremy D. Wilson, Chad E. Bigelow, David J. Calkins, Thomas H. Foster 
Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices
Identifying MnVII-oxo Species during Electrochemical Water Oxidation by Manganese Oxide  Biaobiao Zhang, Quentin Daniel, Lizhou Fan, Tianqi Liu, Qijun.
Wei-Ran Huang, Zhen He, Jin-Long Wang, Jian-Wei Liu, Shu-Hong Yu 
Volume 11, Pages (January 2019)
Volume 5, Issue 3, Pages (March 2019)
Volume 1, Issue 2, Pages (October 2017)
High-Energy Li Metal Battery with Lithiated Host
Bangsen Ouyang, Kewei Zhang, Ya Yang
Volume 2, Issue 3, Pages (March 2018)
Volume 4, Issue 4, Pages (April 2018)
What Limits the Performance of Ta3N5 for Solar Water Splitting?
Volume 9, Pages (November 2018)
Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation  Fajer Mushtaq, Xiangzhong Chen, Marcus Hoop, Harun.
Volume 10, Pages (December 2018)
Zhuangchai Lai, Ye Chen, Chaoliang Tan, Xiao Zhang, Hua Zhang  Chem 
Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
Volume 1, Issue 3, Pages (November 2017)
Yolk-Shell Architecture with Precision Expansion Void Control for Lithium Ion Batteries  Runwei Mo, David Rooney, Kening Sun  iScience 
Jiarui He, Yuanfu Chen, Arumugam Manthiram
Volume 4, Issue 3, Pages (March 2018)
Volume 3, Issue 1, Pages (July 2017)
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
Particulate Matter Capturing via Naturally Dried ZIF-8/Graphene Aerogels under Harsh Conditions  Jiajun Mao, Yuxin Tang, Yandong Wang, Jianying Huang,
Volume 12, Pages (February 2019)
Volume 11, Pages (January 2019)
Volume 11, Pages (January 2019)
Volume 7, Pages (September 2018)
Fig. 1 High-resolution printing of liquid metals.
How Myxobacteria Glide
Volume 3, Issue 1, Pages (July 2017)
Yang Lou, Honglu Wu, Jingyue Liu
Fig. 1 The structure of the 3DGraphene foam.
Ryota Adachi, Rei Yamada, Hiroshi Kuba
Zhuangchai Lai, Ye Chen, Chaoliang Tan, Xiao Zhang, Hua Zhang  Chem 
Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries  Li-Na.
Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors by Zhen Wen, Min-Hsin Yeh, Hengyu.
Volume 19, Pages (September 2019)
Solution-Deposited Solid-State Electrochromic Windows
Volume 2, Issue 2, Pages (February 2017)
Fig. 2 Structural design of an F-DSSC.
Fig. 2 Stabilizing the lithium-electrolyte interface.
Volume 9, Pages (November 2018)
Fig. 2 Temperature-sensing properties of the flexible rGO/PVDF nanocomposite film. Temperature-sensing properties of the flexible rGO/PVDF nanocomposite.
Fig. 3 Performance of the solid wire supercapacitors of 3D graphene-CNT fiber for energy storage. Performance of the solid wire supercapacitors of 3D graphene-CNT.
Anran Li, Jie Lin, Zhongning Huang, Xiaotian Wang, Lin Guo  iScience 
Presentation transcript:

A Flexible Supercapacitor with High True Performance Zhonghua Ren, Yuanji Li, Jie Yu  iScience  Volume 9, Pages 138-148 (November 2018) DOI: 10.1016/j.isci.2018.10.016 Copyright © 2018 The Author(s) Terms and Conditions

iScience 2018 9, 138-148DOI: (10.1016/j.isci.2018.10.016) Copyright © 2018 The Author(s) Terms and Conditions

Figure 1 A Schematic Illustrating Fabrication of TPNF (A) Drilling through pores on a stainless steel sheet. (B) Sticking a tape on one side of the porous stainless steel sheet and pouring epoxy resin on the other side. (C) Standing for a while to make the pores fully filled with epoxy resin. (D) Peeling off the tape. (E) Obtained template. (F) Ni electrodeposition on template. (G) Ni stripping. See also Transparent Methods. iScience 2018 9, 138-148DOI: (10.1016/j.isci.2018.10.016) Copyright © 2018 The Author(s) Terms and Conditions

Figure 2 Characterization of Template and TPNF (A and B) Low- (A) and high- (B) magnification scanning electron micrographs of porous stainless steel sheet. Scale bars: 500 μm in (A) and 200 μm in (B). (C) Scanning electron micrograph of template showing a pore filled with epoxy resin. Scale bar, 10 μm. (D and E) Scanning electron micrographs of front (D) and back (E) sides of TPNF. Scale bars, 200 μm. Insets: high-magnification scanning electron micrographs. Scale bars in insets, 20 μm. (F) Cross-sectional scanning electron micrograph of the TPNF deposited for 2 hr at 1 mA cm−2. Scale bar, 5 μm. (G) Optical image of a large-area TPNF (8 × 10 cm2) showing the translucency. Scale bar, 2 cm. (H) Optical image of the TPNF floating on water, indicating the lightness. Scale bar, 5 cm. (I and J) Optical images of the TPNF wrapped on a thin glass rod (I) and unfolded (J), showing the flexibility. Scale bars, 2 cm. See also Figure S1. iScience 2018 9, 138-148DOI: (10.1016/j.isci.2018.10.016) Copyright © 2018 The Author(s) Terms and Conditions

Figure 3 Materials Characterization of MnO2 Deposited on TPNFs (A–D) Optical images of the electrodes deposited for 10 min (A), 20 min (B), 40 min (C), and 60 min (D). Scale bars, 1 cm. (E) Scanning electron micrograph of the electrode deposited for 60 min. Scale bar, 200 μm. Inset: higher magnification scanning electron micrograph. Scale bar in inset, 20 μm. (F and G) Scanning electron micrographs of MnO2 nanosheets deposited for 60 min at the rib (F) and pore (G) regions. Scale bars, 500 nm. (H) Scanning electron micrograph of the electrode deposited for 60 min taken by tilting the sample. Scale bar, 10 μm. (I and J) EDX mapping images of Mn (I) and O (J) elements taken from (G). Scale bars, 500 nm. (K) Composition distribution along a line shown in (G). (L) Optical image of the electrode deposited for 60 min under ultrasonic vibration. Scale bar, 1 cm. See also Figures S2–S8. iScience 2018 9, 138-148DOI: (10.1016/j.isci.2018.10.016) Copyright © 2018 The Author(s) Terms and Conditions

Figure 4 Electrochemical Characterization of MnO2 Electrodes (A) CV curves of MnO2 nanosheets on TPNFs with different mass loadings at 100 mV s−1. (B) CV curves of MnO2 nanosheets on different current collectors with 8.2 mg cm−2 mass loading at 100 mV s−1. (C) GCD curves of MnO2 nanosheets on different current collectors with 8.2 mg cm−2 mass loading at 7 mA cm−2. (D) CV curves of MnO2 nanosheets on TPNF with 8.2 mg cm−2 mass loading at different scan rates. (E) Specific capacitances of MnO2 nanosheets on different current collectors with 8.2 mg cm−2 mass loading at different current densities. (F) Specific capacitances of MnO2 nanosheets on different current collectors with different mass loadings at 3.5 mA cm−2. (G) Cycling stability of the electrodes using different current collectors with 8.2 mg cm−2 mass loading tested at 17.5 mA cm−2. (H) Nyquist plots of the MnO2/TPNF electrodes with different mass loadings. Inset: equivalent fitting circuit and magnified Nyquist plots. (I) Nyquist plots of the electrodes using different current collectors with 8.2 mg cm−2 mass loading. Inset: magnified Nyquist plots. See also Figure S9. iScience 2018 9, 138-148DOI: (10.1016/j.isci.2018.10.016) Copyright © 2018 The Author(s) Terms and Conditions

Figure 5 Characterization of the Packaged Flexible Solid-State Supercapacitor (A) Diagram of a packaged full cell. (B) Cross-sectional scanning electron micrograph of the cell. Scale bar, 50 μm. (C) Matching of MnO2 and MoO3−x electrodes at 20 mV s−1. (D) CV curves of the cell at different scan rates. (E) GCD curves of the cell at different current densities. (F and G) Ragone plots of the cell based on the packaged cell weight (F) and volume (G). (H) Optical images of a light-emitting diode powered by two tandem cells with areas of 2 × 8 cm2 in different bending states. Scale bar, 2 cm. See also Figures S10–S22. iScience 2018 9, 138-148DOI: (10.1016/j.isci.2018.10.016) Copyright © 2018 The Author(s) Terms and Conditions