DFA MINIMIZATION Maham Noor 4/8/ Content: Method 1 Equivalence Theorem Method 2 Table filling method 2.

Slides:



Advertisements
Similar presentations
CSC 361NFA vs. DFA1. CSC 361NFA vs. DFA2 NFAs vs. DFAs NFAs can be constructed from DFAs using transitions: Called NFA- Suppose M 1 accepts L 1, M 2 accepts.
Advertisements

Complexity and Computability Theory I Lecture #4 Rina Zviel-Girshin Leah Epstein Winter
Finite Automata CPSC 388 Ellen Walker Hiram College.
Finite Automata Section 1.1 CSC 4170 Theory of Computation.
Finite Automata and Non Determinism
Fall 2006Costas Busch - RPI1 Deterministic Finite Automata And Regular Languages.
Lecture 3 Goals: Formal definition of NFA, acceptance of a string by an NFA, computation tree associated with a string. Algorithm to convert an NFA to.
Introduction to the Theory of Computation John Paxton Montana State University Summer 2003.
Lecture 3 Goals: Formal definition of NFA, acceptance of a string by an NFA, computation tree associated with a string. Algorithm to convert an NFA to.
1.Defs. a)Finite Automaton: A Finite Automaton ( FA ) has finite set of ‘states’ ( Q={q 0, q 1, q 2, ….. ) and its ‘control’ moves from state to state.
Finite Automata Costas Busch - RPI.
1 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY For next time: Read 2.1 & 2.2.
Nondeterministic Finite Automata CS 130: Theory of Computation HMU textbook, Chapter 2 (Sec 2.3 & 2.5)
THEORY OF COMPUTATION 08 KLEENE’S THEOREM.
CSCI 2670 Introduction to Theory of Computing August 24, 2005.
Fall 2006Costas Busch - RPI1 Deterministic Finite Automaton (DFA) Input Tape “Accept” or “Reject” String Finite Automaton Output.
4b 4b Lexical analysis Finite Automata. Finite Automata (FA) FA also called Finite State Machine (FSM) –Abstract model of a computing entity. –Decides.
Decidable Questions About Regular languages 1)Membership problem: “Given a specification of known type and a string w, is w in the language specified?”
CSCI 2670 Introduction to Theory of Computing August 26, 2004.
CSCI 2670 Introduction to Theory of Computing August 25, 2005.
Finite Automata – Definition and Examples Lecture 6 Section 1.1 Mon, Sep 3, 2007.
Deterministic Finite Automata (DFA) - 1 q0q0q0q0 q1q1q1q strings that do not end with "1". Build an automaton to identify strings that end with.
CS 208: Computing Theory Assoc. Prof. Dr. Brahim Hnich Faculty of Computer Sciences Izmir University of Economics.
An Introduction to Rabin Automata Presented By: Tamar Aizikowitz Spring 2007 Automata Seminar.
Theory of Computing CSCI 356/541 Lab Session. Outline Lab 1: Finite Automata  Construct and Run Construct and Run  Manipulating Transitions Manipulating.
August 23, 2005 CSCI 2670 Introduction to Theory of Computing August 23, 2005.
Finite Automata & Regular Languages Sipser, Chapter 1.
Lecture Notes 
Transparency No. 2-1 Formal Language and Automata Theory Homework 2.
using Deterministic Finite Automata & Nondeterministic Finite Automata
98 Nondeterministic Automata vs Deterministic Automata We learned that NFA is a convenient model for showing the relationships among regular grammars,
Complexity and Computability Theory I Lecture #5 Rina Zviel-Girshin Leah Epstein Winter
Tree Automata First: A reminder on Automata on words Typing semistructured data.
Deterministic Finite Automata Nondeterministic Finite Automata.
1 Finite Automata. 2 Introductory Example An automaton that accepts all legal Pascal identifiers: Letter Digit Letter or Digit "yes" "no" 2.
1/29/02CSE460 - MSU1 Nondeterminism-NFA Section 4.1 of Martin Textbook CSE460 – Computability & Formal Language Theory Comp. Science & Engineering Michigan.
1 Chapter 2 Finite Automata (part a) Hokkaido, Japan.
Costas Busch - LSU1 Deterministic Finite Automata And Regular Languages.
Fall 2004COMP 3351 Finite Automata. Fall 2004COMP 3352 Finite Automaton Input String Output String Finite Automaton.
Introduction to Automata Theory Theory of Computation Lecture 3 Tasneem Ghnaimat.
Formal Language & Automata Theory
CIS Automata and Formal Languages – Pei Wang
2-Way Finite Automata: An Example
Non Deterministic Automata
FORMAL LANGUAGES AND AUTOMATA THEORY
Theory of Computation Lecture # 9-10.
Nondeterministic Finite Automata
Finite Automata & Regular Languages
Examples for Finite Automata
CSE322 Finite Automata Lecture #2.
Non-Determinism 12CS45 Finite Automata.
Deterministic Finite Automata And Regular Languages Prof. Busch - LSU.
Non-Deterministic Finite Automata
Non Deterministic Automata
Grids of finite automata
DFA Equivalence & Minimization
CS 350 — Fall 2018 gilray.org/classes/fall2018/cs350/
Finite Automata State Transition Graph (Non)deterministic FA: DFA, NFA
CSE322 Minimization of finite Automaton & REGULAR LANGUAGES
Finite Automata.
CSCI 2670 Introduction to Theory of Computing
Chapter 1 Regular Language
CSCI 2670 Introduction to Theory of Computing
AUTOMATA THEORY.
Chapter # 5 by Cohen (Cont…)
Sub: Theoretical Foundations of Computer Sciences
CSCI 2670 Introduction to Theory of Computing
CSCI 2670 Introduction to Theory of Computing
Non Deterministic Automata
Part Two : Nondeterministic Finite Automata
Presentation transcript:

DFA MINIMIZATION Maham Noor 4/8/20171

Content: Method 1 Equivalence Theorem Method 2 Table filling method 2

Introduction Minimization/optimization of a deterministic finite automaton refers to the detection of those states of a DFA, whose presence or absence in a DFA does not affect the language accepted by the automata. The states that can be eliminated from automata, without affecting the language accepted by automata, are: Unreachable or inaccessible states. Dead states. 3

Example of unreachable state

Example of dead state

Equivalence Theorem Consider the following DFA Steps: 1) Draw transition table 2) Find 0, 1, 2 ….equivalence

Step 01: Transition Table

Step 02: Find equivalence 0 Equivalence {A,B,C,D} {E} 1 Equivalence {A,B,C} {D} {E} 2 Equivalence {A,C} {B} {D} {E} 3 Equivalence {A,C} {B} {D} {E}

Step 03: equivalence to minimized DFA 0 Equivalence {A,B,C,D} {E} 1 Equivalence {A,B,C} {D} {E} 2 Equivalence {A,C} {B} {D} {E} 3 Equivalence {A,C} {B} {D} {E}

Example 02 Consider the following transition table Steps: 1) Find 0, 1, 2 ….equivalence

Step 01: find 0,1,2…. Equivalence 0 Equivalence {qo, q1, q2, q3, q4, q5, q6, q7}{q2} 1 Equivalence {q0, q4, q6} {q1, q7} {q3, q5} {q2} 2 Equivalence {q0, q4} {q6} {q1, q7} {q3, q5} {q2} 3 Equivalence {q0, q4} {q6} {q1, q7} {q3, q5} {q2}

01 q0q1q5 q1q6q2 q0q2 q3q2q6 q4q7q5 q2q6 q4 q7q6q2 01qo, q4q1, q7q3, q5 q6 q0, q4 q1, q7q6q2 q3, q5q2q6 q2q0, q4q2