Neutrino-Nucleus Reactions and Nucleosynthesis Toshio Suzuki Nihon University/CNS ・Neutrino-induced reactions on 12C and 4He based on new shell-model Hamiltonians ・Synthesis of light elements during supernova explosion 7Li, 11B etc. 2. ・Neutrino-induced reactions on Fe and Ni isotopes based on new shell-model Hamiltonian (GXPF1) ・Synthesis of heavier elements e.g. 55Mn
Collaborators T. Otsuka, University of Tokyo/CNS, RIKEN S. Chiba, JAEA M. Honma, University of Aizu K. Higashiyama, Chiba Institute of Technology T. Yoshida, NAO H. Umeda, University of Tokyo K. Nomoto, University of Tokyo T. Kajino, NAO/University of Tokyo R. Fujimoto, Hitachi Co.
Neutrino induced reactions on 12C and 4He ○ New Shell-Model Hamiltonian in p-sd shell: SFO Suzuki, Fujimoto & Otsuka, PR C67, 044302 (2003) ・Enhanced spin-isospin interactions Proper tensor components ・ Improved spin and magnetic properties Proper shell evolution
B(GT) values for 12C -> 12N Magnetic moments of p-shell nuclei SFO B(GT) values for 14N -> 14C SFO present = SFO Suzuki, Fujimoto, Otsuka, PR C67 (2003) Negret et al., PRL 97 (2006) KVI RCNP SFO*: gAeff/gA=0.95 B(GT: 12C) fitted to experiment
Effects of Tensor Force on Shell Evolution Otsuka, Suzuki, Fujimoto, Grawe, Akaishi, PRL 69 (2005) Effective Single-Particle Energy for N=8 Nuclei
○ Neutrino induced reactions on 12C ・Exclusive and inclusive reactions by DAR ・Reactions induced by supernova ○ Reactions on 4He ○ Synthesis of light elements; 7Li, 11B etc. ・Dependence of production rates on shell model Hamiltonians ・Constraints on neutrino temperatures ・Effects of neutrino oscillations
DAR ν spectra Exclusive 12C → 12N (1+) EXP ●SFO*: gAeff/gA=0.95 Allen et al. (1990) Exp: LSND PR C64 (2001) ●SFO*: gAeff/gA=0.95 Suzuki, Chiba, Yoshida, Kajino, Otsuka, PR C74 (2006) ●WBP: Warburton-Brown ●HT: Hayes-Towner, PR C62, 015501 (2000) p:Cohen-Kurath (8-16)2BME, sd: USD of Wildenthal, pf: KB3, p-sd and others: Millener-Kurath ●NCSM: Hayes-Navratil-Vary, PRL 91 (2003) AV8’(2-body) + TM’(99) (3-body) ●CRPA: Kolb-Langanke-Vogel, NP A652, 91 (1999)
Inclusive = Exclusive (1+g.s.) + Excited state Exp: LSND PR C64 (2001) 2- 2-: gAeff/gA = * 0.75 *0.70 Cf. Gaarde et al. q= 0.65 (CK) Quenching of spin-dipole strength
Cross sections for Supernova Neutrinos with temperature T Proton and neutron emissions BR: Hauser-Feshbach model
Cross sections for Supernova Neutrinos with temperature T S. Chiba
Light Element Abundances and Nucleosynthesis Processes Inner O/C He/C He/H H
ν- 4He reaction cross sections cf. Woosley-Haxton: Sussex potential by Elliott et al.
Effects of the spreading of the SD strength Nakayama et al. SPSDMK* GDR+SDR1+SDR2
Abundances of 7Li and 11B produced in supernova explosion processes M=16.2 M☼ (SN 1987A) No oscillation case
Constraints on neutrino temperatures SN contributions in GCE: WBP+SFO WBP+SFO SPSDMK+PSDMK2 Yoshida, Kajino, Hartmann, PRL 94 (2005)
SN Nucleosynthesis with Neutrino Oscillations Supernova nucleosynthesis (n-process) 16.2 M star supernova model corresponding to SN 1987A Normal mass hierarchy, sin22q13 = 0.01 no mix mix 7Be, 11C abundance Increase by a factor of 2.5 and 1.4 Increase in the rates of charged-current reactions 4He(ne,e-p)3He and 12C(ne,e-p)11C in the He layer
7Li/11B Dependence on Mass Hierarchy and q13 N(7Li)/N(11B) Good indicator for neutrino oscillation parameters normal inverted no mix Including uncertainties in neutrino temperatures (Tne, Tne, Tnm,t, En) = (3.2, 5.0, 6.0, 3.0) , (3.2, 4.8, 5.8, 3.0) , (3.2, 5.0, 6.4, 2.4) , (3.2, 4.1, 5.0, 3.5) , (4.0, 4.0, 6.0, 3.0) , (4.0, 5.0, 6.0, 3.0) (MeV, MeV, MeV, ×1053ergs) Normal mass hierarchy and sin22q13 > 0.002 Cf. Yoshida et al., PRL 96 (2006) N(7Li)/N(11B) > 0.8 Possibility for constraining mass hierarchy and lower limit of the mixing angle q13. Neutrino experiments Constraining upper limit of q13
2. Neutrino Nucleus Reactions on Fe and Ni Isotopes Charge-exchange and neutral-current reactions; ● Gamow-Teller transitions GT strength: shell model calculation by Honma et al. GXPF1J ● Emissions of proton, neutron, α, γ ● Production of Mn in Population III star
M1 strength (GXPF1J) B(GT) for 58Ni Honma Exp: Fujita et al. 8-13MeV
B(GT)=9.47 B(GT)exp=9.9±2.4 B(GT)KB3G=8.86 GXPF1J Honma et al. cf. KB3 Caurier et al. B(GT)=9.47 B(GT)exp=9.9±2.4 B(GT)KB3G=8.86
Neutral Current Reactions GT0
Neutral Current Reactions
Synthesis of Mn in Population III Star
Yoshida, Umeda, Nomoto [Mn/Fe] No ν -0.53 HW02 -0.29 [Mn/Fe] GXPF1J -0.25 GXPF1J×2 -0.17 KB3G -0.32 KB3G×2 -0.27 No ν With ν(GXPF1J) With ν x2 With ν(Woosley)
Summary New shell-model Hamiltonian (SFO) with a proper role of spin-isospin interaction and shell evolustion Better description of Gamow-Teller transitions and magnetic moments in p-shell Applications to neutrino-nucleus reactions on 12C and 4He Enhanced cross sections -> enhanced yields of light elements during supernova explosion: 7Li, 11B, 10Be etc. Constraints on neutrino temperatures Constraint on ν mass hierarchy and lower limit on Larger strength with more fragmentation for GXPF1 than KB3G in GT strengths in Fe and Ni isotopes Enhancement of neutral current reaction cross sections in Fe and Ni isotopes -> Enhancement of synthesis of Mn and Co by neutrino processes