Transmission Control Protocol (TCP)

Slides:



Advertisements
Similar presentations
Introduction 1 Lecture 13 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
Advertisements

2: Transport Layer 31 Transport Layer 3. 2: Transport Layer 32 TCP Flow Control receiver: explicitly informs sender of (dynamically changing) amount of.
Introduction 1-1 Chapter 3 TCP Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 IC322 Fall 2013 Some.
Transportation Layer. Very similar to the data link layer. – two hosts connected by a link or two hosts connected by a network differences: – When two.
Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 16 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
1 Transport Layer Lecture 9 Imran Ahmed University of Management & Technology.
CS 471/571 Transport Layer 5 Slides from Kurose and Ross.
Transport Layer 3-1 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles.
Transport Layer3-1 Summary of Reliable Data Transfer Checksums help us detect errors ACKs and NAKs help us deal with errors If ACK/NAK has errors sender.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
Transport Layer1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Chapter 3 outline 3.1 transport-layer services
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
Transport Layer Transport Layer: TCP. Transport Layer 3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
1 Announcement r Project 2 out m Much harder than project 1, start early! r Homework 2 due next Tuesday.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Announcement Project 2 out –Much harder than project 1, start early! Homework 2 due next Tu.
Chapter 3 Transport Layer
The Future r Let’s look at the homework r The next test is coming the 19 th (just before turkey day!) r Monday will finish TCP canned slides r Wednesday.
Transport Layer3-1 Data Communication and Networks Lecture 7 Transport Protocols: TCP October 21, 2004.
Announcement Homework 1 graded Homework 2 out –Due in a week, 1/30 Project 2 problems –Minet can only compile w/ old version of gcc (2.96). –Only tlab-login.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Chapter 3b outline 3.1 connection-oriented transport: TCP  segment structure  reliable data transfer  flow control  connection.
Network LayerII-1 RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part.
Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
2: Transport Layer 21 Transport Layer 2. 2: Transport Layer 22 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data.
1 End-to-End Protocols (UDP, TCP, Connection Management)
Transport Layer3-1 Transport Layer Our lives begin to end, the day we become silent about things that matter.
Adapted from: Computer Networking, Kurose/Ross 1DT066 Distributed Information Systems Chapter 3 Transport Layer.
September 26 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Connection-oriented transport: TCP. Transport Layer 3-2 TCP: Overview RFCs: 793,1122,1323, 2018, 2581  full duplex data:  bi-directional data flow in.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Transport Layer1 Goals: r understand principles behind transport layer services and protocols: m UDP m TCP Overview: r transport layer services r multiplexing/demultiplexing.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
CSEN 404 Transport Layer II Amr El Mougy Lamia AlBadrawy.
DMET 602: Networks and Media Lab Amr El Mougy Yasmeen EssamAlaa Tarek.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Chapter 3 outline 3.1 transport-layer services
09-Transport Layer: TCP Transport Layer.
Chapter 3 Transport Layer
COMP 431 Internet Services & Protocols
Chapter 3 outline 3.1 Transport-layer services
DMET 602: Networks and Media Lab
Chapter 3 outline 3.1 transport-layer services
Chapter 3 Transport Layer
CS 1652 Jack Lange University of Pittsburgh
Slides have been adapted from:
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data:
Introduction to Networks
CS1652 TCP Jack Lange University of Pittsburgh
Review: UDP demultiplexing TCP demultiplexing Multiplexing?
Chapter 3 Transport Layer
Transport Layer Goals: Overview:
Chapter 5 TCP Transmission Control
Chapter 3 outline 3.1 transport-layer services
Chapter 3 outline 3.1 Transport-layer services
All People Seem To Need Data Processing
Transportation Layer.
All People Seem To Need Data Processing
Chapter 3 outline 3.1 transport-layer services
Chapter 3 Transport Layer
Lecture 5 – Chapter 3 CIS 5617, Spring2019 Anduo Wang
Presentation transcript:

Transmission Control Protocol (TCP) CS 352, Lecture 8 http://www.cs.rutgers.edu/~sn624/352-S19 Srinivas Narayana (slides heavily adapted from text authors’ material)

Transmission Control Protocol: Overview point-to-point: one sender, one receiver reliable, in-order byte stream: no “message boundaries” pipelined: TCP congestion and flow control set window size full duplex data: bi-directional data flow in same connection MSS: maximum segment size connection-oriented: handshaking (exchange of control msgs) inits sender, receiver state before data exchange flow controlled: sender will not overwhelm receiver RFCs: 793,1122,1323, 2018, 2581

TCP segment structure source port # dest port # sequence number 32 bits URG: urgent data (generally not used) counting by bytes of data (not segments!) source port # dest port # sequence number ACK: ACK # valid acknowledgement number head len not used PSH: push data now (generally not used) U A P R S F receive window # bytes rcvr willing to accept checksum Urg data pointer RST, SYN, FIN: connection estab (setup, teardown commands) options (variable length) application data (variable length) Internet checksum (as in UDP)

TCP seq. numbers, ACKs sequence numbers: source port # dest port # sequence number acknowledgement number checksum rwnd urg pointer outgoing segment from sender sequence numbers: byte stream “number” of first byte in segment’s data acknowledgements: seq # of next byte expected from other side cumulative ACK How does receiver handle out-of-order segments? A: TCP spec doesn’t say, up to implementor window size N sender sequence number space source port # dest port # sequence number acknowledgement number checksum rwnd urg pointer incoming segment to sender sent ACKed sent, not-yet ACKed (“in-flight”) usable but not yet sent not usable A

simple telnet scenario TCP seq. numbers, ACKs Host A Host B User types ‘C’ Seq=42, ACK=79, data = ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ Seq=79, ACK=43, data = ‘C’ host ACKs receipt of echoed ‘C’ Seq=43, ACK=80 simple telnet scenario

Reliable transfer in TCP

TCP reliable data transfer TCP creates reliable service on top of IP’s unreliable service pipelined segments cumulative acks single retransmission timer retransmissions triggered by: timeout events duplicate acks Let’s initially consider simplified TCP sender: ignore duplicate acks ignore flow control, congestion control

TCP round trip time, timeout Q: how to set TCP timeout value? longer than RTT but RTT varies too short: premature timeout, unnecessary retransmissions too long: slow reaction to segment loss Q: how to estimate RTT? SampleRTT: measured time from segment transmission until ACK receipt ignore retransmissions SampleRTT will vary, want estimated RTT “smoother” average several recent measurements, not just current SampleRTT

TCP round trip time, timeout EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT exponential weighted moving average influence of past sample decreases exponentially fast typical value:  = 0.125 RTT: gaia.cs.umass.edu to fantasia.eurecom.fr RTT (milliseconds) sampleRTT EstimatedRTT Transport Layer time (seconds)

TCP round trip time, timeout timeout interval: EstimatedRTT plus “safety margin” large variation in EstimatedRTT -> larger safety margin estimate SampleRTT deviation from EstimatedRTT: DevRTT = (1-)*DevRTT + * |SampleRTT-EstimatedRTT| (typically,  = 0.25) TimeoutInterval = EstimatedRTT + 4*DevRTT estimated RTT “safety margin”

TCP sender events: Managing a single timer data rcvd from app: create segment with seq # seq # is byte-stream number of first data byte in segment start timer if not already running think of timer as for oldest unacked segment expiration interval: TimeOutInterval timeout: retransmit segment that caused timeout restart timer ack rcvd: if ack acknowledges previously unacked segments update what is known to be ACKed restart timer if there are still unacked segments

TCP: retransmission scenarios Host A Host B Host A Host B SendBase=92 Seq=92, 8 bytes of data Seq=92, 8 bytes of data Seq=100, 20 bytes of data timeout timeout ACK=100 X ACK=100 ACK=120 Seq=92, 8 bytes of data Seq=92, 8 bytes of data SendBase=100 SendBase=120 ACK=100 ACK=120 SendBase=120 lost ACK scenario Premature timeout But segment 120 not transmitted

TCP: retransmission scenarios Host A Host B timeout Seq=92, 8 bytes of data Seq=100, 20 bytes of data ACK=100 X ACK=120 Seq=120, 15 bytes of data Cumulative ACK avoids retransmission altogether

TCP receiver events: ACKing [RFC 1122, RFC 2581] event at receiver arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed expected seq #. One other segment has ACK pending arrival of out-of-order segment higher-than-expect seq. # . Gap detected arrival of segment that partially or completely fills gap TCP receiver action delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK immediately send single cumulative ACK, ACKing both in-order segments immediately send duplicate ACK, indicating seq. # of next expected byte immediate send ACK, provided that segment starts at lower end of gap

TCP fast retransmit timeout period often relatively long: long delay before resending lost packet Instead: detect lost segments via duplicate ACKs sender often sends many segments back-to-back if segment is lost, there will likely be many duplicate ACKs. TCP fast retransmit if sender receives 3 ACKs for same data (“triple duplicate ACKs”), resend unacked segment with smallest seq # likely that unacked segment lost, so don’t wait for timeout

TCP fast retransmit X fast retransmit after sender Host A Host B timeout Seq=92, 8 bytes of data Seq=100, 20 bytes of data X ACK=100 ACK=100 ACK=100 ACK=100 Seq=100, 20 bytes of data fast retransmit after sender receipt of triple duplicate ACK

Problem with RTT Calculation Sender Receiver 2K SEQ=0 Sender Timeout RTT? ACK = 2048 2K SEQ=0 RTT?

Karn’s algorithm Retransmission ambiguity Measure RTT from original data segment Measure RTT from most recent segment Either way there is a problem in RTT estimate One solution Never update RTT measurements based on acknowledgements from retransmitted packets Problem: Sudden change in RTT can cause system never to update RTT Primary path failure leads to a slower secondary path

Karn’s algorithm Use back-off as part of RTT computation Whenever packet loss, RTO is increased by a factor Use this increased RTO as RTO estimate for the next segment (not from SRTT) Only after an acknowledgment received for a successful transmission is the timer set to new RTT obtained from SRTT

Flow Control

receiver protocol stack TCP flow control application process application may remove data from TCP socket buffers …. application OS TCP socket receiver buffers … slower than TCP receiver is delivering (sender is sending) TCP code IP code receiver controls sender, so sender won’t overflow receiver’s buffer by transmitting too much, too fast flow control from sender receiver protocol stack

TCP flow control receiver “advertises” free buffer space by including rwnd value in TCP header of receiver-to- sender segments RcvBuffer size set via socket options (typical default is 4096 bytes) many operating systems autoadjust RcvBuffer sender limits amount of unacked (“in-flight”) data to receiver’s rwnd value guarantees receive buffer will not overflow to application process buffered data free buffer space RcvBuffer rwnd TCP segment payloads receiver-side buffering

Connection Management

Connection Management before exchanging data, sender/receiver “handshake”: agree to establish connection (each knowing the other willing to establish connection) agree on connection parameters application application connection state: ESTAB connection variables: seq # client-to-server server-to-client rcvBuffer size at server,client connection state: ESTAB connection Variables: seq # client-to-server server-to-client rcvBuffer size at server,client network network Socket clientSocket = newSocket("hostname","port number"); Socket connectionSocket = welcomeSocket.accept();

Agreeing to establish a connection 2-way handshake: Q: will 2-way handshake always work in network? variable delays retransmitted messages (e.g. req_conn(x)) due to message loss message reordering can’t “see” other side Let’s talk ESTAB OK ESTAB choose x req_conn(x) ESTAB acc_conn(x) ESTAB

Agreeing to establish a connection 2-way handshake failure scenarios: choose x req_conn(x) ESTAB acc_conn(x) client terminates ESTAB choose x req_conn(x) acc_conn(x) data(x+1) accept connection x completes server forgets x retransmit req_conn(x) ESTAB half open connection! (no client!) retransmit req_conn(x) ESTAB data(x+1) accept client terminates server forgets x connection x completes

TCP 3-way handshake client state server state LISTEN SYNSENT SYNbit=1, Seq=x choose init seq num, x send TCP SYN msg SYN RCVD ESTAB SYNbit=1, Seq=y ACKbit=1; ACKnum=x+1 choose init seq num, y send TCP SYNACK msg, acking SYN ACKbit=1, ACKnum=y+1 received SYNACK(x) indicates server is live; send ACK for SYNACK; this segment may contain client-to-server data received ACK(y) indicates client is live ESTAB Transport Layer

TCP 3-way handshake: FSM closed Socket connectionSocket = welcomeSocket.accept(); L Socket clientSocket = newSocket("hostname","port number"); SYN(x) SYNACK(seq=y,ACKnum=x+1) create new socket for communication back to client listen SYN(seq=x) SYN rcvd SYN sent SYNACK(seq=y,ACKnum=x+1) ACK(ACKnum=y+1) ACK(ACKnum=y+1) ESTAB L

TCP: closing a connection client, server each close their side of connection send TCP segment with FIN bit = 1 respond to received FIN with ACK on receiving FIN, ACK can be combined with own FIN simultaneous FIN exchanges can be handled

TCP: closing a connection client state server state ESTAB ESTAB FIN_WAIT_1 FINbit=1, seq=x can no longer send but can receive data clientSocket.close() CLOSE_WAIT FIN_WAIT_2 ACKbit=1; ACKnum=x+1 wait for server close can still send data can no longer send data LAST_ACK TIMED_WAIT FINbit=1, seq=y CLOSED timed wait for 2*max segment lifetime CLOSED ACKbit=1; ACKnum=y+1