IME634: Management Decision Analysis

Slides:



Advertisements
Similar presentations
Modellistica e Gestione dei Sistemi Ambientali A tool for multicriteria analysis: The Analytic Hierarchy Process Chiara Mocenni University of.
Advertisements

Payam Moradi Young Researchers Club Azad University of Tafresh, Iran Eleventh International Conference on Fuzzy Set Theory and Applications (FSTA 2012)
ECE 667 Synthesis and Verification of Digital Circuits
Multi‑Criteria Decision Making
1 1 Slide Chapter 10 Multicriteria Decision Making n A Scoring Model for Job Selection n Spreadsheet Solution of the Job Selection Scoring Model n The.
1. Introduction 2 In this study, fuzzy logic (FL), multiple criteria decision making (MCDM) and maintenance management (MM) are integrated into one subject.
The Rational Decision-Making Process
Introduction to Management Science
Multi-Criteria Analysis – compromise programming.
1 Multi-Criteria Decision Making MCDM Approaches.
MADM Y. İlker TOPCU, Ph.D twitter.com/yitopcu.
Constructing the Decision Model Y. İlker TOPCU, Ph.D twitter.com/yitopcu.

Osyczka Andrzej Krenich Stanislaw Habel Jacek Department of Mechanical Engineering, Cracow University of Technology, Krakow, Al. Jana Pawla II 37,
Evolutionary Multi-objective Optimization – A Big Picture Karthik Sindhya, PhD Postdoctoral Researcher Industrial Optimization Group Department of Mathematical.
On comparison of different approaches to the stability radius calculation Olga Karelkina Department of Mathematics University of Turku MCDM 2011.
1 1 Slide © 2004 Thomson/South-Western Chapter 17 Multicriteria Decisions n Goal Programming n Goal Programming: Formulation and Graphical Solution and.
Spreadsheet Modeling and Decision Analysis, 3e, by Cliff Ragsdale. © 2001 South-Western/Thomson Learning Multicriteria Decision Making u Decision.
Multi-Criteria Decision Making by: Mehrdad ghafoori Saber seyyed ali
New Modeling Techniques for the Global Routing Problem Anthony Vannelli Department of Electrical and Computer Engineering University of Waterloo Waterloo,
USING PREFERENCE CONSTRAINTS TO SOLVE MULTI-CRITERIA DECISION MAKING PROBLEMS Tanja Magoč, Martine Ceberio, and François Modave Computer Science Department,
Tanja Magoč, François Modave, Xiaojing Wang, and Martine Ceberio Computer Science Department The University of Texas at El Paso.
Multi-Criteria Decision Making
Maximizing value and Minimizing base on Fuzzy TOPSIS model
Analyzing the Problem (SAW, WP, TOPSIS) Y. İlker TOPCU, Ph.D twitter.com/yitopcu.
Approximation Algorithms Department of Mathematics and Computer Science Drexel University.
MCDM Y. İlker TOPCU, Ph.D twitter.com/yitopcu.
1 An Arc-Path Model for OSPF Weight Setting Problem Dr.Jeffery Kennington Anusha Madhavan.
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
Ashish Das Indian Institute of Technology Bombay India.
Analysis Manager Training Module
Data Transformation: Normalization
Lap Chi Lau we will only use slides 4 to 19
St. Edward’s University
Control Flow Testing Handouts
Computing and Compressive Sensing in Wireless Sensor Networks
Topics in Algorithms Lap Chi Lau.
MTH108 Business Math I Lecture 6.
Data Structures and Algorithms
Analytic Hierarchy Process (AHP)
The Greedy Method and Text Compression
A Scoring Model for Job Selection
Optimal marketing strategy: A decision-making with ANP and TOPSIS
Outline of the Chapter Basic Idea Outline of Control Flow Testing
Haim Kaplan and Uri Zwick
Decision Matrices Business Economics.
Presented by Rich Goyette
Analysis and design of algorithm
Multidimensional Scaling and Correspondence Analysis
Dave Powell, Elon University,
DMAIC Analyze, Improve, Control
The Simplex Method.
Unit 4: Dynamic Programming
Estimation Error and Portfolio Optimization
Estimation Error and Portfolio Optimization
Estimation Error and Portfolio Optimization
Slides by John Loucks St. Edward’s University.
Agenda for This Week Monday, April 25 AHP Wednesday, April 27
All pairs shortest path problem
IME634: Management Decision Analysis
Chapter 6 Network Flow Models.
Facilities Planning and Design Course code:
Lecture 19 Linear Program
CS 416 Artificial Intelligence
IME634: Management Decision Analysis
Part 3. Linear Programming
IME634: Management Decision Analysis
SVMs for Document Ranking
Error Correction Coding
Presentation transcript:

IME634: Management Decision Analysis Raghu Nandan Sengupta Industrial & Management Department Indian Institute of Technology Kanpur VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) The idea of VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) i.e., Multicriteria Optimization and Compromise Solution), a MCDM technique, was developed by Serafim Opricovic during his Ph.D. work VIKOR method was introduced as one applicable technique to be implemented within MCDM problem and it as developed as a multi attribute decision making method to solve a discrete decision making problem with non-commensurable (different units) and conflicting criteria VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR (contd..) In this method the decision maker likes a solution that is closest to the ideal, and hence the decisions/alternatives are evaluated/compared/ranked accordingly While ranking, the decisions/alternatives, rather than the best solution, is the target as finding out the ideal solution is not always feasible, but rather the closest to the ideal is what is practically possible. VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR (contd..) Two of the MCDM methods, i.e., VIKOR and TOPSIS are based on an aggregating function which represents the concept of closeness of the solution to the ideal solution In VIKOR we follow linear normalization while in TOPSIS it is vector normalization VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR (contd..) The use of normalization is used to eliminate the units of criterion functions and thus ensure a level playing field for different criterion In VIKOR we determine a maximum group utility for the majority and a minimum of an individual regret for the opponent In TOPSIS a solution with the shortest distance to the ideal solution and the greatest distance from the negative-ideal solution is required to be found. While doing this we do not consider the relative importance of these distances. VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR (contd..) Assume you have 𝑚 decisions/alternatives, 𝐴 𝑖 , 𝑖=1,⋯,𝑚 and 𝑛 attributes/decision criteria/goals 𝐶 𝑗 , 𝑗=1,⋯,𝑛 Consider 𝐶 𝑗 𝐴 𝑖 as the value of the 𝑗 𝑡ℎ attributes/decision criteria/goals for the 𝑖 𝑡ℎ alternative such that 𝐿 𝑝,𝑖 = 𝑗=1 𝑛 𝑤 𝑗 𝐶 𝑗 𝐴 + − 𝐶 𝑗 𝐴 𝑖 𝐶 𝑗 𝐴 + − 𝐶 𝑗 𝐴 − 𝑝 1 𝑝 , 𝑖=1,⋯,𝑚; 0≤𝑝≤∞ Here: 𝐶 𝑗 𝐴 + = max 𝑖 𝐶 𝑗 𝐴 𝑖 and 𝐶 𝑗 𝐴 − = min 𝑖 𝐶 𝑗 𝐴 𝑖 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR (contd..) Remember 𝐿 𝑝,𝑖 is used to formulate the ranking measure, where 𝑝=1,2,⋯, is integer and denotes the distance measure norm used for 𝑖= 1,⋯,𝑚 𝑝=1 signifies the Manhattan norm while 𝑝= ∞ denotes the infinity norm VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR (contd..): Distance The 𝐿 1 norm or Manhattan distance between vector/points 𝒙= 𝑥 1 ,⋯, 𝑥 𝑛 and 𝒚= 𝑦 1 ,⋯, 𝑦 𝑛 is 𝑖=1 𝑛 𝑥 𝑖 − 𝑦 𝑖 . The name relates to the distance a taxi has to drive in a rectangular street grid The 𝐿 𝑝 norm between vector/points 𝒙= 𝑥 1 ,⋯, 𝑥 𝑛 and 𝒚= 𝑦 1 ,⋯, 𝑦 𝑛 is 𝑖=1 𝑛 𝑥 𝑖 − 𝑦 𝑖 𝑝 1 𝑝 The 𝐿 ∞ norm between vector/points 𝒙= 𝑥 1 ,⋯, 𝑥 𝑛 and 𝒚= 𝑦 1 ,⋯,𝑦 is max ∀𝑖 𝑦 𝑖 − 𝑦 𝑖 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR (contd..): Distance (Example) 𝒙= 2,−5,20 and 𝒚= −12,15,0 𝐿 1 = 𝑖=1 3 𝑥 𝑖 − 𝑦 𝑖 = 2− −12 + −5 −15 + 20−0 =14+ 20+20=54 𝐿 2 = 𝑖=1 3 𝑥 𝑖 − 𝑦 𝑖 2 1 2 = 2− −12 2 + −5 −15 2 + 20−0 2 1 2 2− −12 2 + −5 −15 2 + 20−0 2 1 2 = 196+400+400 1 2 = 996 1 2 =31.55 𝐿 ∞ = max ∀𝑖 𝑥 𝑖 − 𝑦 𝑖 =𝑚𝑎𝑥 2− −12 , −5 −15 , 20−0 = 𝑚𝑎𝑥 14,20,20 =20 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR (contd..): Distance (Example) RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR (contd..): Distance RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR (contd..): Distance The green line (L2-norm) is the unique shortest path, while the red, blue, yellow (L1-norm) are all same length (=12) for the same route This is why L2-norm has unique solution while L1- norm does not have any unique solution One can generalize this to n-dimension case VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR Algorithm Assume decisions/alternatives as 𝐴 𝑖 , 𝑖= 1,⋯,𝑚 Assume attributes/decision criteria/goals are 𝐶 𝑗 , 𝑗=1,⋯,𝑛 We state the pseudo-codes for the working principle of VIKOR VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR Algorithm (contd..) 1: DEFINE: 𝑿 𝑚×𝑛 (matrix consisting of priority scores assigned to decisions/alternatives), 𝐴 𝑖 ,based on attributes/decision criteria/goals, 𝐶 𝑗 ; 𝑤 𝑗 (weight for the attributes/decision criteria/goals) such that 𝑗=1 𝑛 𝑤 𝑗 =1; 𝐶 𝑗 𝐴 𝑖 (function relationship between attributes/decision criteria/goals for each decisions/alternatives); 𝐶 𝑗 𝐴 + = max 𝑖 𝐶 𝑗 𝐴 𝑖 ; 𝐶 𝑗 𝐴 − = min 𝑖 𝐶 𝑗 𝐴 𝑖 ; 𝐿 𝑝,𝑖 = 𝑗=1 𝑛 𝑤 𝑗 𝐶 𝑗 𝐴 + − 𝐶 𝑗 𝐴 𝑖 𝐶 𝑗 𝐴 + − 𝐶 𝑗 𝐴 − 𝑝 1 𝑝 . Here 𝑖=1,⋯,𝑚;𝑗=1,⋯,𝑛 and 𝑝=1,2,..,∞ (distance norm) 2: INPUT: 𝑿 𝑚×𝑛 (matrix consisting of priority scores assigned to decisions/alternatives), 𝐴 𝑖 ,based on attributes/decision criteria/goals, 𝐶 𝑗 ; 𝑤 𝑗 (weight for the attributes/decision criteria/goals) such that 𝑗=1 𝑛 𝑤 𝑗 =1; 𝐶 𝑗 𝐴 𝑖 (function relationship between attributes/decision criteria/goals for each decisions/alternatives). Here 𝑖=1,⋯,𝑚 and 𝑗=1,⋯,𝑛. 3: START if: 𝑖=1:𝑚 4: START if: 𝑗=1:𝑛 5: CALCULATE: 𝐶 𝑗 𝐴 𝑖 ; 𝐶 𝑗 𝐴 + = max 𝑖 𝐶 𝑗 𝐴 𝑖 ; 𝐶 𝑗 𝐴 − = min 𝑖 𝐶 𝑗 𝐴 𝑖 ; 𝐿 𝑝,𝑖 = 𝑗=1 𝑛 𝑤 𝑗 𝐶 𝑗 𝐴 + − 𝐶 𝑗 𝐴 𝑖 𝐶 𝑗 𝐴 + − 𝐶 𝑗 𝐴 − 𝑝 1 𝑝 where 𝑖=1,⋯,𝑚;𝑗=1,⋯,𝑛 and 𝑝=1,2,..,∞ (distance norm) 6: END if 7: END if 8: CALCULATE: 𝐶 𝑗 𝐴 + ; 𝐶 𝑗 𝐴 − ; 𝐿 𝑝,𝑖 9: REPORT: 𝐶 𝑗 𝐴 + ; 𝐶 𝑗 𝐴 − ; 𝐿 𝑝,𝑖 10: END VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Steps # 01 (Construct the normalized decision matrix) Assume the decision matrix, 𝑿= 𝑥 11 ⋯ 𝑥 1𝑛 ⋮ ⋱ ⋮ 𝑥 𝑚1 ⋯ 𝑥 𝑚𝑛 𝑚×𝑛 , m is number of Alternatives and n is number of Criterion VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Steps # 01 (Construct the normalized decision matrix) 𝑿= 30 40 50 20 90 100 120 110 190 150 0.9 0.3 0.5 0.5 0.7 9 7 3 4 5 5×4 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Steps # 01 (Construct the normalized decision matrix) Convert the entries in X into scaled normalized values, where 𝑟 𝑖𝑗 = 𝑥 𝑖𝑗 2 𝑘=1 𝑚 𝑥 𝑘𝑗 2 , which has no dimension Thus 𝑹= 𝑟 11 ⋯ 𝑟 1𝑛 ⋮ ⋱ ⋮ 𝑟 𝑚1 ⋯ 𝑟 𝑚𝑛 𝑚×𝑛 = 𝑥 11 2 𝑘=1 𝑚 𝑥 𝑘1 2 ⋯ 𝑥 1𝑛 2 𝑘=1 𝑚 𝑥 𝑘𝑛 2 ⋮ ⋱ ⋮ 𝑥 𝑚1 2 𝑘=1 𝑚 𝑥 𝑘1 2 ⋯ 𝑥 𝑚𝑛 2 𝑘=1 𝑚 𝑥 𝑘𝑛 2 𝑚×𝑛 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Steps # 01 (Construct the normalized decision matrix) 𝑹= 30 30+100+0.9+9 40 40+120+0.3+7 50 50+110+0.5+3 20 20+190+0.5+4 90 90+150+0.7+5 100 30+100+0.9+9 120 40+120+0.3+7 110 50+110+0.5+3 190 20+190+0.5+4 150 90+150+0.7+5 0.9 30+100+0.9+9 0.3 40+120+0.3+7 0.5 50+110+0.5+3 0.5 20+190+0.5+4 0.7 90+150+0.7+5 9 30+100+0.9+9 7 40+120+0.3+7 3 50+110+0.5+3 4 20+190+0.5+4 5 90+150+0.7+5 5×4 , where 𝑟 𝑖𝑗 = 𝑥 𝑖,𝑗 𝑘=1 𝑚 𝑥 𝑘,𝑗 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Steps # 01 (Construct the normalized decision matrix) 𝑹= 0.214439 0.239091 0.305810 0.093240 0.366300 0.714796 0.717274 0.672783 0.885781 0.610501 0.006433 0.001793 0.003058 0.002331 0.002849 0.064332 0.041841 0.018349 0.018648 0.020350 5×4 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 02 (Construct the weighted normalized decision matrix) If the decision maker decides on the set of weights, depending on his/her preference, then the weight, 𝑾= 𝑤 1 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 𝑤 𝑛 𝑛×𝑛 , such that 𝑗=1 𝑛 𝑤 =1 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 02 (Construct the weighted normalized decision matrix) 𝑾= 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.25 4×4 , such that 𝑗=1 𝑛 𝑤 =1 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 02 (Construct the weighted normalized decision matrix) Calculate 𝑭=𝑹𝑾= 𝑓 1,1 ⋯ 𝑓 1,𝑛 ⋮ ⋱ ⋮ 𝑓 𝑚,1 ⋯ 𝑓 𝑚,𝑛 𝑚×𝑛 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 02 (Construct the weighted normalized decision matrix) 𝑭=𝑹𝑾= 0.214439 0.239091 0.305810 0.093240 0.366300 0.714796 0.717274 0.672783 0.885781 0.610501 0.006433 0.001793 0.003058 0.002331 0.002849 0.064332 0.041841 0.018349 0.018648 0.020350 5×4 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.25 4×4 = 0.0536 0.0598 0.0765 0.0233 0.0916 0.1787 0.1793 0.1682 0.2214 0.1526 0.0016 0.0004 0.0008 0.0006 0.0007 0.0161 0.0105 0.0046 0.0047 0.0051 5×4 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR: Step # 03 (Determine the maximum/best from the criterion values) Determine the maximum/best: 𝑓 𝑗 ∗ = max ∀𝑖 𝑓 𝑖,𝑗 , 𝑗=1,⋯,𝑛 𝑓 1 ∗ =𝑚𝑎𝑥 𝑓 1,1 , 𝑓 2,1 ,⋯, 𝑓 𝑚−1,1 , 𝑓 𝑚,1 𝑓 2 ∗ =𝑚𝑎𝑥 𝑓 1,2 , 𝑓 2,2 ,⋯, 𝑓 𝑚−1,2 , 𝑓 𝑚,2 . 𝑓 𝑛−1 ∗ =𝑚𝑎𝑥 𝑓 1,𝑛−1 , 𝑓 2,𝑛−1 ,⋯, 𝑓 𝑚−1,𝑛−1 , 𝑓 𝑚,𝑛−1 𝑓 𝑛 ∗ =𝑚𝑎𝑥 𝑓 1,𝑛 , 𝑓 2,𝑛 ,⋯, 𝑓 𝑚−1,𝑛 , 𝑓 𝑚,𝑛 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR: Step # 03 (Determine the maximum/best from the criterion values) 𝑓 1 ∗ =𝑚𝑎𝑥 0.0536,0.0598,0.0765,0.0233,0.0916 = 0.0916 𝑓 2 ∗ =𝑚𝑎𝑥 0.1787,0.1793,0.1682,0.2214,0.1526 = 0.2214 𝑓 3 ∗ =𝑚𝑎𝑥 0.0016,0.0004,0.0008,0.0006,0.0007 = 0.0016 𝑓 4 ∗ =𝑚𝑎𝑥 0.0161,0.0105,0.0046,0.0047,0.0051 = 0.0161 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR: Step # 03 (Determine the minimum/worst from the criterion values) Determine the minimum/worst 𝑓 𝑗 − = min ∀𝑖 𝑓 𝑖,𝑗 , 𝑗=1,⋯,𝑛 𝑓 1 − =𝑚𝑖𝑛 𝑓 1,1 , 𝑓 2,1 ,⋯, 𝑓 𝑚−1,1 , 𝑓 𝑚,1 𝑓 2 − =𝑚𝑖𝑛 𝑓 1,2 , 𝑓 2,2 ,⋯, 𝑓 𝑚−1,2 , 𝑓 𝑚,2 . 𝑓 𝑛−1 − =𝑚𝑖𝑛 𝑓 1,𝑛−1 , 𝑓 2,𝑛−1 ,⋯, 𝑓 𝑚−1,𝑛−1 , 𝑓 𝑚,𝑛−1 𝑓 𝑛 − =𝑚𝑖𝑛 𝑓 1,𝑛 , 𝑓 2,𝑛 ,⋯, 𝑓 𝑚−1,𝑛 , 𝑓 𝑚,𝑛 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR: Step # 03 (Determine the minimum/worst from the criterion values) 𝑓 1 − =𝑚𝑖𝑛 0.0536,0.0598,0.0765,0.0233,0.0916 = 0.0233 𝑓 2 − =𝑚𝑖𝑛 0.1787,0.1793,0.1682,0.2214,0.1526 = 0.1526 𝑓 3 − =𝑚𝑖𝑛 0.0016,0.0004,0.0008,0.0006,0.0007 = 0.0004 𝑓 4 − =𝑚𝑖𝑛 0.0161,0.0105,0.0046,0.0047,0.0051 = 0.0046 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR: Step # 03 (Graphical representation of maximum/best and minimum/worst for each criterion) VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR: Step # 04 (Determine the relative ratios based on 𝑳 𝟏 norm utilizing maximum/best and minimum/worst ratios) Compute: 𝐿 1,𝑖 = 𝑗=1 𝑛 𝑤 𝑗 𝑓 𝑗 ∗ − 𝑓 𝑖,𝑗 𝑓 𝑗 ∗ − 𝑓 𝑗 − , 𝑖=1,⋯,𝑚 𝐿 1,1 = 𝑤 1 𝑓 1 ∗ − 𝑓 1,1 𝑓 1 ∗ − 𝑓 1 − + 𝑤 2 𝑓 2 ∗ − 𝑓 1,2 𝑓 2 ∗ − 𝑓 2 − +⋯+ 𝑤 𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 1,𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑛−1 − + 𝑤 𝑛 𝑓 𝑛 ∗ − 𝑓 1,𝑛 𝑓 𝑛 ∗ − 𝑓 𝑛 − 𝐿 1,2 = 𝑤 1 𝑓 1 ∗ − 𝑓 2,1 𝑓 1 ∗ − 𝑓 1 − + 𝑤 2 𝑓 2 ∗ − 𝑓 2,2 𝑓 2 ∗ − 𝑓 2 − +⋯+ 𝑤 𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 2,𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑛−1 − + 𝑤 𝑛 𝑓 𝑛 ∗ − 𝑓 2,𝑛 𝑓 𝑛 ∗ − 𝑓 𝑛 − . 𝐿 1,𝑚−1 = 𝑤 1 𝑓 1 ∗ − 𝑓 𝑚−1,1 𝑓 1 ∗ − 𝑓 1 − + 𝑤 2 𝑓 2 ∗ − 𝑓 𝑚−1,2 𝑓 2 ∗ − 𝑓 2 − +⋯+ 𝑤 𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑚−1,𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑛−1 − + 𝑤 𝑛 𝑓 𝑛 ∗ − 𝑓 𝑚−1,𝑛 𝑓 𝑛 ∗ − 𝑓 𝑛 − 𝐿 1,𝑚 = 𝑤 1 𝑓 1 ∗ − 𝑓 𝑚,1 𝑓 1 ∗ − 𝑓 1 − + 𝑤 2 𝑓 2 ∗ − 𝑓 𝑚,2 𝑓 2 ∗ − 𝑓 2 − +⋯+ 𝑤 𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑚,𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑛−1 − + 𝑤 𝑛 𝑓 𝑛 ∗ − 𝑓 𝑚,𝑛 𝑓 𝑛 ∗ − 𝑓 𝑛 − VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR: Step # 04 (Determine the relative ratios based on 𝑳 𝟏 norm utilizing maximum/best and minimum/worst ratios) 𝐿 1,1 =0.25× 0.0916−0.0536 0.0916−0.0233 +0.25× 0.2214−0.1787 0.2214−0.1526 +0.25× 0.0016−0.0016 0.0016−0.0004 +0.25× 0.0161−0.0161 0.0161−0.0046 = 0.2943 𝐿 1,2 =0.25× 0.0916−0.0598 0.0916−0.0233 +0.25× 0.2214−0.1793 0.2214−0.1526 +0.25× 0.0016−0.0004 0.0016−0.0004 +0.25× 0.0161−0.0105 0.0161−0.0046 = 0.6418 𝐿 1,3 =0.25× 0.0916−0.0765 0.0916−0.0233 +0.25× 0.2214−0.1682 0.2214−0.1526 +0.25× 0.0016−0.0008 0.0016−0.0004 +0.25× 0.0161−0.0046 0.0161−0.0046 = 0.6807 𝐿 1,4 =0.25× 0.0916−0.0233 0.0916−0.0233 +0.25× 0.2214−0.2214 0.2214−0.1526 +0.25× 0.0016−0.0006 0.0016−0.0004 +0.25× 0.0161−0.0047 0.0161−0.0046 = 0.7194 𝐿 1,5 =0.25× 0.0916−0.0916 0.0916−0.0233 +0.25× 0.2214−0.1526 0.2214−0.1526 +0.25× 0.0016−0.0007 0.0016−0.0004 +0.25× 0.0161−0.0051 0.0161−0.0046 = 0.6822 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR: Step # 04 (Determine the relative ratios based on 𝑳 ∞ norm utilizing maximum/best and minimum/worst ratios) Compute: 𝐿 ∞,𝑖 = max ∀𝑗 𝑗=1 𝑛 𝑤 𝑗 𝑓 𝑗 ∗ − 𝑓 𝑖,𝑗 𝑓 𝑗 ∗ − 𝑓 𝑗 − , 𝑖=1,⋯,𝑚 𝐿 ∞,1 =𝑚𝑎𝑥 𝑤 1 𝑓 1 ∗ − 𝑓 1,1 𝑓 1 ∗ − 𝑓 1 − , 𝑤 2 𝑓 2 ∗ − 𝑓 1,2 𝑓 2 ∗ − 𝑓 2 − ,⋯, 𝑤 𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 1,𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑛−1 − , 𝑤 𝑛 𝑓 𝑛 ∗ − 𝑓 1,𝑛 𝑓 𝑛 ∗ − 𝑓 𝑛 − 𝐿 ∞,2 =𝑚𝑎𝑥 𝑤 1 𝑓 1 ∗ − 𝑓 2,1 𝑓 1 ∗ − 𝑓 1 − , 𝑤 2 𝑓 2 ∗ − 𝑓 2,2 𝑓 2 ∗ − 𝑓 2 − ,⋯, 𝑤 𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 2,𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑛−1 − , 𝑤 𝑛 𝑓 𝑛 ∗ − 𝑓 2,𝑛 𝑓 𝑛 ∗ − 𝑓 𝑛 − . 𝐿 ∞,𝑚−1 =𝑚𝑎𝑥 𝑤 1 𝑓 1 ∗ − 𝑓 𝑚−1,1 𝑓 1 ∗ − 𝑓 1 − , 𝑤 2 𝑓 2 ∗ − 𝑓 𝑚−1,2 𝑓 2 ∗ − 𝑓 2 − ,⋯, 𝑤 𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑚−1,𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑛−1 − , 𝑤 𝑛 𝑓 𝑛 ∗ − 𝑓 𝑚−1,𝑛 𝑓 𝑛 ∗ − 𝑓 𝑛 − 𝐿 ∞,𝑚 =𝑚𝑎𝑥 𝑤 1 𝑓 1 ∗ − 𝑓 𝑚,1 𝑓 1 ∗ − 𝑓 1 − , 𝑤 2 𝑓 2 ∗ − 𝑓 𝑚,2 𝑓 2 ∗ − 𝑓 2 − ,⋯, 𝑤 𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑚,𝑛−1 𝑓 𝑛−1 ∗ − 𝑓 𝑛−1 − , 𝑤 𝑛 𝑓 𝑛 ∗ − 𝑓 𝑚,𝑛 𝑓 𝑛 ∗ − 𝑓 𝑛 − VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

RNSengupta,IME Dept.,IIT Kanpur,INDIA VIKOR: Step # 04 (Determine the relative ratios based on 𝑳 ∞ norm utilizing maximum/best and minimum/worst ratios) 𝐿 ∞,1 =𝑚𝑎𝑥 0.25× 0.0916−0.0536 0.0916−0.0233 ,0.25× 0.2214−0.1787 0.2214−0.1526 ,0.25× 0.0016−0.0016 0.0016−0.0004 ,0.25× 0.0161−0.0161 0.0161−0.0046 = 0.1553 𝐿 ∞,2 =𝑚𝑎𝑥 0.25× 0.0916−0.0598 0.0916−0.0233 ,0.25× 0.2214−0.1793 0.2214−0.1526 ,0.25× 0.0016−0.0004 0.0016−0.0004 ,0.25× 0.0161−0.0105 0.0161−0.0046 = 0.2500 𝐿 ∞,3 =𝑚𝑎𝑥 0.25× 0.0916−0.0765 0.0916−0.0233 ,0.25× 0.2214−0.1682 0.2214−0.1526 ,0.25× 0.0016−0.0008 0.0016−0.0004 ,0.25× 0.0161−0.0046 0.0161−0.0046 = 0.2500 𝐿 ∞,4 =𝑚𝑎𝑥 0.25× 0.0916−0.0233 0.0916−0.0233 ,0.25× 0.2214−0.2214 0.2214−0.1526 ,0.25× 0.0016−0.0006 0.0016−0.0004 ,0.25× 0.0161−0.0047 0.0161−0.0046 = 0.2500 𝐿 ∞,5 =𝑚𝑎𝑥 0.25× 0.0916−0.0916 0.0916−0.0233 ,0.25× 0.2214−0.1526 0.2214−0.1526 ,0.25× 0.0016−0.0007 0.0016−0.0004 ,0.25× 0.0161−0.0051 0.0161−0.0046 = 0.2500 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 05 (Determine the maximum/minimum based on 𝑳 𝟏 norm) Find: 𝐿 1,∀𝑖 𝑚𝑎𝑥 = max ∀𝑖 𝐿 1,𝑖 , i.e., 𝐿 1,∀𝑖 𝑚𝑎𝑥 = max 𝐿 1,1 , 𝐿 1,2 ,⋯, 𝐿 1,𝑚−1 , 𝐿 1,𝑚 Find: 𝐿 1,∀𝑖 𝑚𝑖𝑛 = min ∀𝑖 𝐿 1,𝑖 , 𝑖=1,⋯,𝑚, i.e., 𝐿 1,∀𝑖 𝑚𝑖𝑛 =min 𝐿 1,1 , 𝐿 1,2 ,⋯, 𝐿 1,𝑚−1 , 𝐿 1,𝑚 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 05 (Determine the maximum/minimum based on 𝑳 𝟏 norm) RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 05 (Determine the maximum/minimum based on 𝑳 ∞ norm) Find: 𝐿 ∞,∀𝑖 𝑚𝑎𝑥 = max ∀𝑖 𝐿 ∞,𝑖 , 𝑖=1,⋯,𝑚, i.e., 𝐿 ∞,∀𝑖 𝑚𝑎𝑥 =max 𝐿 ∞,1 , 𝐿 ∞,2 ,⋯, 𝐿 ∞,𝑚−1 , 𝐿 ∞,𝑚 Find: 𝐿 ∞,∀𝑖 𝑚𝑖𝑛 = min ∀𝑖 𝐿 ∞,𝑖 , 𝑖=1,⋯,𝑚, i.e., 𝐿 ∞,∀𝑖 𝑚𝑖𝑛 =min 𝐿 ∞,1 , 𝐿 ∞,2 ,⋯, 𝐿 ∞,𝑚−1 , 𝐿 ∞,𝑚 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 05 (Determine the maximum/minimum based on 𝑳 ∞ norm) RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 06 (Calculate relative ranking) Compute: 𝑄 𝑖 =𝑣 𝐿 1,𝑖 − 𝐿 1,𝑖 𝑚𝑖𝑛 𝐿 1,𝑖 𝑚𝑎𝑥 − 𝐿 1,𝑖 𝑚𝑖𝑛 + 1−𝑣 𝐿 ∞,𝑖 − 𝐿 ∞,𝑖 𝑚𝑖𝑛 𝐿 ∞,𝑖 𝑚𝑎𝑥 − 𝐿 ∞,𝑖 𝑚𝑖𝑛 , 𝑖=1,⋯,𝑚 𝑄 1 =𝑣 𝐿 1,1 − 𝐿 1,1 𝑚𝑖𝑛 𝐿 1,1 𝑚𝑎𝑥 − 𝐿 1,1 𝑚𝑖𝑛 + 1−𝑣 𝐿 ∞,1 − 𝐿 ∞,1 𝑚𝑖𝑛 𝐿 ∞,1 𝑚𝑎𝑥 − 𝐿 ∞,1 𝑚𝑖𝑛 𝑄 2 =𝑣 𝐿 1,2 − 𝐿 1,2 𝑚𝑖𝑛 𝐿 1,2 𝑚𝑎𝑥 − 𝐿 1,2 𝑚𝑖𝑛 + 1−𝑣 𝐿 ∞,2 − 𝐿 ∞,2 𝑚𝑖𝑛 𝐿 ∞,2 𝑚𝑎𝑥 − 𝐿 ∞,2 𝑚𝑖𝑛 . 𝑄 𝑚−1 =𝑣 𝐿 1,𝑚−1 − 𝐿 1,𝑚−1 𝑚𝑖𝑛 𝐿 1,𝑚−1 𝑚𝑎𝑥 − 𝐿 1,𝑚−1 𝑚𝑖𝑛 + 1−𝑣 𝐿 ∞,𝑚−1 − 𝐿 ∞,𝑚−1 𝑚𝑖𝑛 𝐿 ∞,𝑚−1 𝑚𝑎𝑥 − 𝐿 ∞,𝑚−1 𝑚𝑖𝑛 𝑄 𝑚 =𝑣 𝐿 1,𝑚 − 𝐿 1,𝑚 𝑚𝑖𝑛 𝐿 1,𝑚 𝑚𝑎𝑥 − 𝐿 1,𝑚 𝑚𝑖𝑛 + 1−𝑣 𝐿 ∞,𝑚 − 𝐿 ∞,𝑚 𝑚𝑖𝑛 𝐿 ∞,𝑚 𝑚𝑎𝑥 − 𝐿 ∞,𝑚 𝑚𝑖𝑛 VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA

VIKOR: Step # 06 (Calculate relative ranking) 𝑣 is introduced as weight of the strategy of ‘‘the majority of criteria” (or ‘‘the maximum group utility”), here one can consider 𝑣=0.5 Rank the alternatives, sorting by the values 𝐿 1,𝑖 , 𝐿 ∞,𝑖 and 𝑄 𝑖 in decreasing order The results are three ranking lists. Propose as a compromise solution the alternatives obtained above VIKOR RNSengupta,IME Dept.,IIT Kanpur,INDIA