CERN- Bonding A.Pezous CERN, 13.03.2013. Copyright 2013 CSEM | Bonding| A.Pezous | Page 1 Design 2 NA62 frame 2 ATLAS 8 explosions 10 micro-chevron.

Slides:



Advertisements
Similar presentations
Chapter 5 One- and Two-Sample Estimation Problems.
Advertisements

Slide 1 Insert your own content. Slide 2 Insert your own content.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 3.1 Chapter 3.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 7 System Design Techniques.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 116.
1 Chapter 58 - Clinical Syndromes of Metabolic Alkalosis Copyright © 2013 Elsevier Inc. All rights reserved.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 107.
1 Chapter 43 - The Urine Concentrating Mechanism and Urea Transporters Copyright © 2013 Elsevier Inc. All rights reserved.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 40.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 28.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 14.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 44.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 38.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 58.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 112.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 75.
1 Chapter 40 - Physiology and Pathophysiology of Diuretic Action Copyright © 2013 Elsevier Inc. All rights reserved.
Combining Like Terms. Only combine terms that are exactly the same!! Whats the same mean? –If numbers have a variable, then you can combine only ones.
0 - 0.
Teacher Name Class / Subject Date A:B: Write an answer here #1 Write your question Here C:D: Write an answer here.
Comparing and Order Fractions with Unlike Denominators
10/5/2013Multiplication Rule 11  Multiplication Rule 1: If a > b and c > 0 then a c > bc Examples If 7 > 3 and 5 > 0 then 7(5) > 3(5) If 2x + 6 > 8 then.
X and Y Intercepts.
Warm UP September 9, 2013 Explain one thing you know about measurement and mass. Next on page 15 of your notebook begin setting up Cornell notes with todays.
Low material budget microfabricated cooling devices for particle detectors P. PETAGNA and A. MAPELLI On behalf of: CERN PH/DT The NA62 Collaboration EPFL.
Design and Simulation of a MEMS Piezoelectric Micropump Alarbi Elhashmi, Salah Al-Zghoul, Advisor: Prof. Xingguo Xiong Department of Biomedical Engineering,
COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS EAP dimple fabrication process. Process D EAP dimple using carbon powder electrodes and DRIE.
Adhesive Bonding with SU-8
SFB CSEM 4’’. PROCESS FLOW #1 avant recuit #1 apres recuit.
Bulk MEMS 2013, Part 2
Connectors 13/03/2013Collaboration meeting CERN - CSEM1.
Pressure Tests Results 13/03/2013Collaboration meeting CERN - CSEM1.
Powerpoint Templates Page 1 Powerpoint Templates Optically induced flow cytometry for continuous microparticle counting and sorting Student: Chin – wei.
Micro-channel CO 2 cooling for the LHCb VELO upgrade. R. Dumps, J. Buytaert, A. Mapelli, P. Petagna, B. Verlaat CERN A. Nomerotski Oxford University September.
Optimization of T-Cell Trapping in a Microfluidic Device Group #19 Jeff Chamberlain Matt Houston Eric Kim.
Rogawski Calculus Copyright © 2008 W. H. Freeman and Company Chapter 12: Vector Geometry Section 12.4: The Cross Product Jon Rogawski Calculus, ET First.
Fabrication Process for Micro Structures
Microchannel cooling Alessandro Mapelli CERN PH-DT EPFL-LMIS4 Reporting on behalf of D. Bouit, J. Daguin, L. Kottelat, J. Noel, P. Petagna – CERN PH-DT.
Pipe and station integration ALEX BITADZE CERN- European Organization for Nuclear Research ATLAS Experiment
Source Page US:official&tbm=isch&tbnid=Mli6kxZ3HfiCRM:&imgrefurl=
Microfluidic Cooling for Detector and Electronic OUTLINE: Motivations for micro-channel cooling in HEP Micro-technologies involved First possible HEP cases:the.
Fab - Step 1 Take SOI Wafer Top view Side view Si substrate SiO2 – 2 um Si confidential.
IRMMW-THz 2014 Tucson R2/A-28.1 P. Pütz et al.: Waveguide HEB mixers for upGREAT Feedhorn antennas for upGREAT high performance feedhorns –smooth-walled.
Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: A Study on the Optimization of an Air Dehumidification Desiccant System J. Thermal.
(Chapters 29 & 30; good to refresh 20 & 21, too)
Date of download: 6/9/2016 Copyright © 2016 SPIE. All rights reserved. Process flow chart of the trilevel resist system using the polysilazane on the spin-on.
Путешествуй со мной и узнаешь, где я сегодня побывал.
Date of download: 11/12/2016 Copyright © 2016 SPIE. All rights reserved. A sketch of a micro four-point probe with integrated CNTs in situ grown from nickel.
Utah Nanofab Design Review Meeting Device Architecture (Top View Layout and Layer Cross Section) Recipes & Settings Standard Concept Equipment & Tools.
Date of download: 9/22/2017 Copyright © ASME. All rights reserved.
Microchannel cooling - Update
Simplified process flow for bonding interface characterization
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Alessandro Mapelli - µcool weekly - CERN
MEMS Two-Phase Vapor Escape Heat Exchanger
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
High Aspect Ratio Si Etching in STS2
ALICE PD group meeting Andrea Francescon.
Fab. Example: Piezoelectric Force Sensor (1)
Summary of Samples Photolithography Samples: EBL Samples:
Page 1. Page 2 Page 3 Page 4 Page 5 Page 6 Page 7.
Copyrights apply.
MEMS Two-Phase Vapor Escape Heat Exchanger
دانشگاه شهیدرجایی تهران
تعهدات مشتری در کنوانسیون بیع بین المللی
Pressure Driven Viscous Flow through a Micro-Channel
بسمه تعالی کارگاه ارزشیابی پیشرفت تحصیلی
First Presentation; Project Defence
David R. Pedersen, Michael H. Guddal University of California, Davis
Presentation transcript:

CERN- Bonding A.Pezous CERN,

Copyright 2013 CSEM | Bonding| A.Pezous | Page 1 Design 2 NA62 frame 2 ATLAS 8 explosions 10 micro-chevron

Copyright 2013 CSEM | Bonding| A.Pezous | Page 2 Process flow Split 1Split 2Split 3Split 4 Wetox 1um Backside lithographie « alignement cross » DRIE etching SiO2(1um)+Si (2um) Frontside lithographie « channels » DRIE etching SiO2(1um)+Si(194 um) SiO2 etch - BHF Surface activation Bonding Bake 1050°C Frontside lithographie INLET-OUTLET opening DRIE etching (Si-186um) Wetox 1um Backside lithographie « alignement cross » DRIE etching SiO2(1um)+Si (2um) Frontside lithographie « channels » DRIE etching SiO2(1um)+Si(194 um) KOH SiO2 etch-BHF Surface activation Bonding Bake 1050°C Frontside lithographie INLET-OUTLET opening DRIE etching(Si-186um) Wetox 1um Backside lithographie « alignement cross » DRIE etching SiO2(1um)+Si (2um) Frontside lithographie « channels » DRIE etching SiO2(1um)+Si(194 um) Backside lithographie INLET-OUTLET opening DRIE etching KOH SiO2 etch-BHF Surface activation Bonding Bake 1050°C Wetox 1um Backside lithographie « alignement cross » DRIE etching SiO2(1um)+Si (2um) Frontside lithographie « channels » DRIE etching SiO2(1um)+Si(194 um) Backside lithographie INLET-OUTLET opening DRIE etching KOH SiO2 etch-BHF Surface activation Bonding Bake 400°C, 12h #3#5#7, #8#9

Copyright 2013 CSEM | Bonding| A.Pezous | Page 3 Results- after etching

Copyright 2013 CSEM | Bonding| A.Pezous | Page 4 #3-split 1(no KOH) Avant recuit Après recuit Split 1 Wetox 1um Backside lithographie « alignement cross » DRIE etching SiO2(1um)+Si (2um) Frontside lithographie « channels » DRIE etching SiO2(1um)+Si(194 um) SiO2 etch - BHF Surface activation Bonding Bake 1050°C Frontside lithographie INLET-OUTLET opening DRIE etching (Si-186um) #3

Copyright 2013 CSEM | Bonding| A.Pezous | Page 5 Avant recuit Après recuit #5- split2: KOH Split 2 Wetox 1um Backside lithographie « alignement cross » DRIE etching SiO2(1um)+Si (2um) Frontside lithographie « channels » DRIE etching SiO2(1um)+Si(194 um) KOH SiO2 etch-BHF Surface activation Bonding Bake 1050°C Frontside lithographie INLET-OUTLET opening DRIE etching(Si-186um) #5

Copyright 2013 CSEM | Bonding| A.Pezous | Page 6 Avant recuit Après recuit #8-split3: ouverture avant bonding Split 3 Wetox 1um Backside lithographie « alignement cross » DRIE etching SiO2(1um)+Si (2um) Frontside lithographie « channels » DRIE etching SiO2(1um)+Si(194 um) Backside lithographie INLET-OUTLET opening DRIE etching KOH SiO2 etch-BHF Surface activation Bonding Bake 1050°C #7, #8

Copyright 2013 CSEM | Bonding| A.Pezous | Page 7 #9-split4: ouverture avant bonding et LTFB Split 4 Wetox 1um Backside lithographie « alignement cross » DRIE etching SiO2(1um)+Si (2um) Frontside lithographie « channels » DRIE etching SiO2(1um)+Si(194 um) Backside lithographie INLET-OUTLET opening DRIE etching KOH SiO2 etch-BHF Surface activation Bonding Bake 400°C, 12h #9

Copyright 2013 CSEM | Bonding| A.Pezous | Page 8 #4- cross-section Après Après amincissement

Thank you for your attention!