Month Year doc.: IEEE yy/xxxxr0 January 2019

Slides:



Advertisements
Similar presentations
Multiple Data Rates for WUR
Advertisements

Multiple Data Rates for WUR
Additional usage models for WUR
Additional usage models for WUR
Additional usage models for WUR
Additional usage models for WUR
WUR Legacy Preamble Design
Considerations on WUP bandwidth and CCA
Various Symbol Types for WUR
WUR Legacy Preamble Design
OOK Waveform Generation
IEEE ba: more than a wake-up radio
PAPR Investigation on FDMA Transmission
Additional usage models for WUR
WUR SYNC Preamble Design
Data Rate for Range Requirement in 11ba
More on the Wake-up AP usage model
Signaling Method for Multiple Data Rate
13-Length Sequence for OOK Waveform Generation
19, Yangjae-daero 11gil, Seocho-gu, Seoul , Korea
Month Year doc.: IEEE yy/xxxxr0 Mar 2017
Discussion of possible BCCs for WUR
19, Yangjae-daero 11gil, Seocho-gu, Seoul , Korea
WUR SYNC Preamble Design
OOK Waveform Generation for FDMA Transmission
Signal Bandwidth and Sequence for OOK Signal Generation
Additional usage models for WUR
IEEE ba: more than a wake-up radio
OOK Signal Bandwidth for WUR
Consideration on WUR Frame Structure
WUR SYNC Preamble Design
OOK Waveform Generation for FDMA Transmission
Consideration on WUR Frame Structure
OOK Waveform Generation Follow-up
On Error Rate Performance of OOK in AWGN
Data Rate for Range Requirement in 11ba
13-Length Sequence for OOK Waveform Generation
FDMA WUR Generation Date: Authors: May 2018 Month Year
PAPR Investigation on FDMA Transmission
OOK Signal Bandwidth for WUR
WUR Dual SYNC Design Follow-up: SYNC bit Duration
PAPR Investigation on FDMA Transmission Follow-up
Signal Bandwidth and Sequence for OOK Signal Generation
OOK Signal Bandwidth for WUR
OOK Waveform Generation for FDMA Transmission
OOK Waveform Generation for FDMA Transmission
19, Yangjae-daero 11gil, Seocho-gu, Seoul , Korea
OOK Signal Bandwidth for WUR
13-Length Sequence for OOK Waveform Generation
OOK Waveform Generation for FDMA Transmission
Signal Bandwidth and Sequence for OOK Signal Generation
Multiple Data Rates for WUR
Spectral line suppression for MC-OOK
Data Rate for Range Requirement in 11ba
Performance Investigation on Wake-Up Receiver
Optimizing OOK Waveform for High Data Rate WUS
WUR FDMA Padding Content
Discussion concerning MC-OOK and CIDs 212 and 665
Text Update on PHY Abstraction and SP
On the Performance of Timing Synchronization and OOK Pulse Bandwidth
19, Yangjae-daero 11gil, Seocho-gu, Seoul , Korea
Further Investigation on WUR Performance
Power Efficiency for Individually Addressed Frames Reception
Considerations on post wake-up sequences
Discussion concerning MC-OOK and CIDs 212 and 665
Signal Bandwidth and Sequence for OOK Signal Generation
Discussion of possible BCCs for WUR
Evaluation of PAPR in WUR FDMA transmission
Omni-directional Multiple Antenna Transmission for WUS
Additional SC MCSs in clause 20 (DMG PHY)
Presentation transcript:

Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 An extension to 11ba: legacy IEEE 802.11 transmitter solution for 802.11ba receivers Date: 2019-01-15 Authors: Authors Affiliations Address Phone email Martí Cervià Universitat Politècnica de Catalunya (UPC)1 Anna Calveras Eduard Garcia-Villegas eduardg@entel.upc.edu Elena López-Aguilera Ilker Demirkol Josep Paradells-Aspas Fundació i2CAT and Universitat Politècnica de Catalunya (UPC)1 (1) supported by ERDF and the Spanish Government through project TEC2016-79988-P, AEI/FEDER, UE Eduard Garcia-Villegas (UPC) John Doe, Some Company

Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 Abstract TGba works on a WuR implementation for IEEE 802.11 WLAN networks. However, legacy devices are unable to generate the OOK modulated signal defined in IEEE 802.11ba. This contribution aims to present a technique to generate a pseudo-OOK modulation to show that legacy IEEE 802.11 OFDM PHY, could be made compatible with IEEE 802.11ba WUR-LDR (Low Data Rate) receivers (to some extent). Eduard Garcia-Villegas (UPC) John Doe, Some Company

Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 Motivation IEEE 802.11ba will enable interesting new usage models for IEEE 802.11 devices [1], spreading its presence in the IoT ecosystem. However… IEEE 802.11ba will define a new type of signal, which will require a modified PHY Therefore… Existing 802.11 devices will not be able to participate in those new scenarios. Why leaving them behind? How many billion devices? Eduard Garcia-Villegas (UPC) John Doe, Some Company

Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 Motivation Just allowing pre-11ba devices to send WuR packets, new 11ba receivers (e.g. Wi-Fi IoT devices) suddenly have a wider market Other legacy solutions exist for 802.11-based WUR (e.g. [2]), but they are not compatible with forthcoming 11ba receivers In the past, people showed interest in a future extension of IEEE 802.11ba See [3] Eduard Garcia-Villegas (UPC) John Doe, Some Company

OOK Modulation: Backwards Compatibility Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 OOK Modulation: Backwards Compatibility As defined by IEEE 802.11ba, WuR transmitter uses OOK to modulate a reduced subset of the OFDM subcarriers (a.k.a. MC-OOK [4]) Not possible in pre-11ba devices Backwards compatible solutions should be based on software updates Implementation needs to take into account the whole IEEE 802.11 OFDM PHY signal processing chain. Eduard Garcia-Villegas (UPC) John Doe, Some Company

OOK Signal Generation on Legacy IEEE 802.11 OFDM PHY January 2019 OOK Signal Generation on Legacy IEEE 802.11 OFDM PHY Input bit sequence IEEE 802.11 OFDM PHY does not enable the generation of OOK’s OFF symbols. Elements of IEEE 802.11 OFDM PHY add power to symbols: Subcarrier modulations Pilot tones Eduard Garcia-Villegas (UPC)

A pseudo-OOK modulation example Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 A pseudo-OOK modulation example Flat Symbol as OOK-ON Symbol. Peak Symbol as OOK-OFF Symbol. Both symbols can be generated using the input bitstream to the OFDM PHY Eduard Garcia-Villegas (UPC) John Doe, Some Company

Generation of the Peak Symbol (1) January 2019 Generation of the Peak Symbol (1) Problem statement: Obtain an input sequence to OFDM PHY that is encoded with uniform subcarrier symbol values after scrambling, channel coding and interleaving. Solution: Use a pre-scrambled uniform binary input block with length N, where N is the payload length of the OFDM symbol. Eduard Garcia-Villegas (UPC)

Generation of the Peak Symbol (2) Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 Generation of the Peak Symbol (2) One magic trick: Pre-scrambling applied to input bit sequence so that we have all ‘0’ or all ‘1’ at the output of the scrambler. Data remains uniform after convolutional coding and interleaving. Encoded as a uniform block of subcarrier values. Caveats: Requires knowledge of the scrambler seed. Resulting symbols affected by pilot tone phase. Eduard Garcia-Villegas (UPC) John Doe, Some Company

Generation of the Flat Symbol January 2019 Generation of the Flat Symbol Bitstream input optimized for maximum output flatness (i.e. minimize PAPR). Depends on the modulation used for transmission. Same MCS chosen to generate Peak symbol Tailed with 7 ‘0’ bits to avoid transitory effects. Reset state of convolutional code not to interfere with Peak symbol generation Example bitstream for flat symbol with BPSK: S[n] = {1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0} Eduard Garcia-Villegas (UPC)

WuS Modulation Procedure January 2019 WuS Modulation Procedure Example of application for IEEE 802.11g OFDM PHY with BPSK Align bitstream to ODFM symbol boundary. Bitstream must be encoded in a single OFDM symbol Append WuS data to bitstream: If “0”: S[n] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} If “1”: S[n] = {1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0} Pre-Scramble the resulting bitstream. Send the bitstream to IEEE 802 OFDM PHY Eduard Garcia-Villegas (UPC)

WuS Modulation Proof of Concept: January 2019 WuS Modulation Proof of Concept: IEEE 802.11g BPSK using MATLAB WLAN Toolkit. Eduard Garcia-Villegas (UPC)

Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 Performance Test Comparison of plain OOK with pseudo-OOK (peak- flat) on a minimal OOK receiver. Matlab implementation for baseband simulation: Eduard Garcia-Villegas (UPC) John Doe, Some Company

Simulation Results AWGN channel 150,000 bits sent to compute BER Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 Simulation Results AWGN channel 150,000 bits sent to compute BER Eduard Garcia-Villegas (UPC) John Doe, Some Company

January 2019 Conclusions Signal generated by legacy IEEE 802.11 OFDM hardware can be decoded by IEEE 802.11ba-like MC- OOK receiver just using software level access (e.g: raw- sockets API) Proved with LDR version of IEEE 802.11ba Knowledge of the IEEE 802.11 OFDM PHY scrambler state is required. Performance is sub-optimal compared to IEEE 802.11ba fully compliant signals. Shorter range with typical/simple OOK receiver Similar performance when using specific receiver for the pseudo OOK (peak-flat) modulation Eduard Garcia-Villegas (UPC)

References 11-17/0029r10, WUR Usage Model Document, Sep. 2017 Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 References 11-17/0029r10, WUR Usage Model Document, Sep. 2017 Oller, J.; Garcia, E.; Lopez, E.; Demirkol, I.; Casademont, J.; Paradells, J.; Gamm, U.; Reindl, L. IEEE 802.11- enabled wake-up radio system: Design and performance evaluation. Electron. Lett. 2014, 50, 1484–1486. 11-18/0540r1, IEEE 802.11ba: more than a wake-up radio, Mar. 2018 IEEE P802.11ba/D1.1, Nov. 2018 Eduard Garcia-Villegas (UPC) John Doe, Some Company

Month Year doc.: IEEE 802.11-yy/xxxxr0 January 2019 Straw Poll 1 What do you think about enabling WUP transmission from non-11ba devices? I don’t support the idea It makes sense as a future amendment/extension to IEEE 802.11ba No opinion/Don’t care Results: A() / B() / C() Eduard Garcia-Villegas (UPC) John Doe, Some Company