Vijayanand Vajrala, James R. Claycomb, Hugo Sanabria, John H. Miller 

Slides:



Advertisements
Similar presentations
Chapter 22: The Electric Field II: Continuous Charge Distributions
Advertisements

Creep Function of a Single Living Cell Nicolas Desprat, Alain Richert, Jacqueline Simeon, Atef Asnacios Biophysical Journal Volume 88, Issue 3, Pages
Light-Scattering Studies of Protein Solutions: Role of Hydration in Weak Protein-Protein Interactions A. Paliwal, D. Asthagiri, D. Abras, A.M. Lenhoff,
A Charged, Thin Sheet of Insulating Material
3-6. Conductors in Static Electric Field
Kinetic Properties of the Cardiac L-Type Ca2+ Channel and Its Role in Myocyte Electrophysiology: A Theoretical Investigation Gregory M. Faber, Jonathan.
Determination of the Interfacial Water Content in Protein-Protein Complexes from Free Energy Simulations Peter Monecke, Thorsten Borosch, Jürgen Brickmann,
The Dynamics and Mechanics of Endothelial Cell Spreading Cynthia A. Reinhart-King, Micah Dembo, Daniel A. Hammer Biophysical Journal Volume 89, Issue 1,
High-Resolution Waveguide THz Spectroscopy of Biological Molecules N. Laman, S. Sree Harsha, D. Grischkowsky, Joseph S. Melinger Biophysical Journal Volume.
Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects Robert Vácha, Max L. Berkowitz,
Intrinsic Disorder and Functional Proteomics Predrag Radivojac, Lilia M. Iakoucheva, Christopher J. Oldfield, Zoran Obradovic, Vladimir N. Uversky, A.
Tue. Feb. 3 – Physics Lecture #26 Gauss’s Law II: Gauss’s Law, Symmetry, and Conductors 1. Electric Field Vectors and Electric Field Lines 2. Electric.
Yield Strength of Human Erythrocyte Membranes to Impulsive Stretching Fenfang Li, Chon U Chan, Claus Dieter Ohl Biophysical Journal Volume 105, Issue 4,
Thermal Fluctuations of Red Blood Cell Membrane via a Constant-Area Particle- Dynamics Model Gianluca Marcelli, Kim H. Parker, C. Peter Winlove Biophysical.
Structure of the Alamethicin Pore Reconstructed by X-Ray Diffraction Analysis Shuo Qian, Wangchen Wang, Lin Yang, Huey W. Huang Biophysical Journal Volume.
A Hydrodynamic Model for Hindered Diffusion of Proteins and Micelles in Hydrogels Ronald J. Phillips Biophysical Journal Volume 79, Issue 6, Pages
Spatiotemporal Image Correlation Spectroscopy (STICS) Theory, Verification, and Application to Protein Velocity Mapping in Living CHO Cells Benedict Hebert,
Mesoscale Simulation of Blood Flow in Small Vessels Prosenjit Bagchi Biophysical Journal Volume 92, Issue 6, Pages (March 2007) DOI: /biophysj
Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies.
Analytical Solutions of Poisson's Equation for Realistic Geometrical Shapes of Membrane Ion Channels Serdar Kuyucak, Matthew Hoyles, Shin-Ho Chung Biophysical.
Cell Traction Forces Direct Fibronectin Matrix Assembly Christopher A. Lemmon, Christopher S. Chen, Lewis H. Romer Biophysical Journal Volume 96, Issue.
Mechanical Properties of Spider Dragline Silk: Humidity, Hysteresis, and Relaxation T. Vehoff, A. Glišović, H. Schollmeyer, A. Zippelius, T. Salditt Biophysical.
Agarose-Dextran Gels as Synthetic Analogs of Glomerular Basement Membrane: Water Permeability Jeffrey A. White, William M. Deen Biophysical Journal Volume.
Charged Polymers Modulate Retrovirus Transduction via Membrane Charge Neutralization and Virus Aggregation Howard E. Davis, Matthew Rosinski, Jeffrey R.
Near-Critical Behavior of Aminoacyl-tRNA Pools in E. coli at Rate-Limiting Supply of Amino Acids Johan Elf, Måns Ehrenberg Biophysical Journal Volume 88,
Probing the Role of Dynamics in Hydride Transfer Catalyzed by Lactate Dehydrogenase Nickolay Zhadin, Miriam Gulotta, Robert Callender Biophysical Journal.
Different Effects of Trifluoroethanol and Glycerol on the Stability of Tropomyosin Helices and the Head-to-Tail Complex Fernando Corrêa, Chuck S. Farah.
Membrane Physical Chemistry - II
Mehdi Bagheri Hamaneh, Matthias Buck  Biophysical Journal 
Klas H. Pettersen, Gaute T. Einevoll  Biophysical Journal 
Volume 111, Issue 7, Pages (October 2016)
Electroosmosis in Transdermal Iontophoresis: Implications for Noninvasive and Calibration-Free Glucose Monitoring  Anke Sieg, Richard H. Guy, M. Begoña.
Computer Simulation of Small Molecule Permeation across a Lipid Bilayer: Dependence on Bilayer Properties and Solute Volume, Size, and Cross-Sectional.
Janosch Lichtenberger, Peter Fromherz  Biophysical Journal 
Volume 84, Issue 4, Pages (April 2003)
Volume 93, Issue 2, Pages (July 2007)
Volume 84, Issue 6, Pages (June 2003)
Marc P. Scherer, Anthony W. Gummer  Biophysical Journal 
Volume 86, Issue 4, Pages (April 2004)
Volume 103, Issue 9, Pages (November 2012)
Volume 87, Issue 2, Pages (August 2004)
Jeremy D. Wilson, Chad E. Bigelow, David J. Calkins, Thomas H. Foster 
Melissa Nivala, Paavo Korge, Michael Nivala, James N. Weiss, Zhilin Qu 
Volume 109, Issue 2, Pages (July 2015)
How DASPMI Reveals Mitochondrial Membrane Potential: Fluorescence Decay Kinetics and Steady-State Anisotropy in Living Cells  Radhan Ramadass, Jürgen.
Marc P. Scherer, Anthony W. Gummer  Biophysical Journal 
Volume 95, Issue 2, Pages (July 2008)
Claude Bédard, Alain Destexhe  Biophysical Journal 
Mesoscale Simulation of Blood Flow in Small Vessels
Modulating Vesicle Adhesion by Electric Fields
Scaling Behavior in Mitochondrial Redox Fluctuations
Calculating the Free Energy of Association of Transmembrane Helices
Vibrational Dynamics of Icosahedrally Symmetric Biomolecular Assemblies Compared with Predictions Based on Continuum Elasticity  Zheng Yang, Ivet Bahar,
Volume 96, Issue 12, Pages (June 2009)
Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects  Robert Vácha, Max L. Berkowitz,
Mesoscopic Modeling of Bacterial Flagellar Microhydrodynamics
Michael S. Lee, Mark A. Olson  Biophysical Journal 
Volume 97, Issue 7, Pages (October 2009)
Jens H. Kroeger, Dan Vernon, Martin Grant  Biophysical Journal 
M. Castellarnau, A. Errachid, C. Madrid, A. Juárez, J. Samitier 
Aligning Paramecium caudatum with Static Magnetic Fields
The Role of DNA Twist in the Packaging of Viral Genomes
Ilia A. Solov’yov, Walter Greiner  Biophysical Journal 
Volume 94, Issue 8, Pages (April 2008)
Janosch Lichtenberger, Peter Fromherz  Biophysical Journal 
Volume 87, Issue 5, Pages (November 2004)
Evaluating Intramural Virtual Electrodes in the Myocardial Wedge Preparation: Simulations of Experimental Conditions  G. Plank, A. Prassl, E. Hofer, N.A.
Nanoelectropulse-Induced Phosphatidylserine Translocation
Olga Vergun, Tatyana V. Votyakova, Ian J. Reynolds  Biophysical Journal 
Mojca Pavlin, Damijan Miklavčič  Biophysical Journal 
Presentation transcript:

Effects of Oscillatory Electric Fields on Internal Membranes: An Analytical Model  Vijayanand Vajrala, James R. Claycomb, Hugo Sanabria, John H. Miller  Biophysical Journal  Volume 94, Issue 6, Pages 2043-2052 (March 2008) DOI: 10.1529/biophysj.107.114611 Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 1 Schematic of the three-membrane cell model. The outer shell represents the plasma membrane, and the inner two shells represent the OMMs and IMMs. Biophysical Journal 2008 94, 2043-2052DOI: (10.1529/biophysj.107.114611) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 2 Electric field vector plot and potential distribution near the plasma membrane with mobile surface charges in an alternating electric field. The uniform electric field in the cell is greater at (a) 106Hz than at (b) 102Hz. The excitation field is 1.0V/cm. Biophysical Journal 2008 94, 2043-2052DOI: (10.1529/biophysj.107.114611) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 3 Variation of the induced potential across the plasma membrane with frequency of the excitation field in the whole cell, three-membrane model (a) without free charges and (b) with a surface charge density of 0.01C/m2 on the outer and 0.001C/m2 on the inner membrane surface. The excitation field is 1.0V/cm. Biophysical Journal 2008 94, 2043-2052DOI: (10.1529/biophysj.107.114611) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 4 Variation of the induced potential across the OMM with frequency of the excitation field in the whole cell, three-membrane model (a) without free charges and (b) with a surface charge density of 0.01C/m2 on the outer and 0.001C/m2 on the inner membrane surface. The excitation field is 1.0V/cm. Biophysical Journal 2008 94, 2043-2052DOI: (10.1529/biophysj.107.114611) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 5 Variation of the induced potential across the IMM with frequency of the excitation field in the whole cell, three-membrane model (a) without free charges and (b) with a surface charge density of 0.01C/m2 on the OMM and 0.001C/m2 on the IMM surface. The excitation field is 1.0V/cm. Biophysical Journal 2008 94, 2043-2052DOI: (10.1529/biophysj.107.114611) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 6 Variation of the induced potential across the OMM with frequency of the excitation field in the isolated mitochondrion, two-membrane model (a) without free charges and (b) with a surface charge density of 0.01C/m2 on the OMM and 0.001C/m2 on the IMM surface. The excitation field is 1.0V/cm. Biophysical Journal 2008 94, 2043-2052DOI: (10.1529/biophysj.107.114611) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 7 Variation of the induced potential across the IMM with frequency of the excitation field in the isolated mitochondrion, two-membrane model (a) without free charges and (b) with a surface charge density of 0.01C/m2 on the OMM and 0.001C/m2 on the IMM surface. The excitation field is 1.0V/cm. Biophysical Journal 2008 94, 2043-2052DOI: (10.1529/biophysj.107.114611) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 8 Change in induced inner mitochondrial transmembrane potential with frequency of the excitation field for matrix conductivities of (a) 0.1, (b) 0.01, and (c) 0.001S/m. The excitation field is 1.0V/cm. Biophysical Journal 2008 94, 2043-2052DOI: (10.1529/biophysj.107.114611) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 9 Finite element calculation showing the distribution of (a) potential and (b) electric field strength in the two-membrane model at 1MHz with parameters and dimensions given in Table 1. The partial cross section near the polar cap of the mitochondrion shows the matrix, IMM, inner membrane space, OMM, and suspending medium. The excitation field is 1.0V/cm incident from right to left in this figure. Biophysical Journal 2008 94, 2043-2052DOI: (10.1529/biophysj.107.114611) Copyright © 2008 The Biophysical Society Terms and Conditions