Среда для моделирования спектрометра ПАМЕЛА в Geant4

Slides:



Advertisements
Similar presentations
High Energy Gamma Ray Group
Advertisements

Simulation of Neutrino Factory beam and quasielastic scattering off electrons in the near detector Yordan Karadzhov University of Sofia “St. Kliment Ohridski”
Efforts to Improve the Reconstruction of Non-Prompt Tracks with the SiD Lori Stevens UCSC ILC Simulation Reconstruction Meeting May 15, 2007 Includes contributions.
ELENA VANNUCCINI ON BEHALF OF PAMELA COLLABORATION Measurement of the Hydrogen and Helium absolute fluxes with the PAMELA experiment.
Monte Carlo Studies of the HERMES RICH in SBS—progress report Andrew Puckett 11/10/2010.
E. Mocchiutti, INFN Trieste - CALOR th June 2006, Chicago E. Mocchiutti 1, M. Albi 1, M. Boezio 1, V. Bonvicini 1, J. Lund 2, J. Lundquist 1, M.
Alignment study 19/May/2010 (S. Haino). Summary on Alignment review Inner layers are expected to be kept “almost” aligned when AMS arrives at ISS Small.
21 ECRS, Kosice, 12/09/2008 Trapped charge particles measurements in the radiation belt by PAMELA instrument Vladimir V. Mikhailov (MEPHI) for PAMELA collaboration.
>80>80>90>70>70>60>60>50>50>29>40>40 Average 66.4 Median 69 High 96 Low 29.
The Time-of-Flight system of the PAMELA experiment: in-flight performances. Rita Carbone INFN and University of Napoli RICAP ’07, Rome,
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
Determination of R – matrix Supervisors: Prof. Nikos Tsoupas Prof. Manolis Benis Sándor Kovács Murat Yavuz Alkmini-Vasiliki Dagli.
Monte Carlo Comparison of RPCs and Liquid Scintillator R. Ray 5/14/04  RPCs with 1-dimensional readout (generated by RR) and liquid scintillator with.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle LCWS 2004 Paris April 19 th 2004.
Summary of PHOS Internal Notes (part I) Rafael Diaz Valdes 10/25/20151.
SHMS Optics Studies Tanja Horn JLab JLab Hall C meeting 18 January 2008.
Event generator comparison Zhiwen Zhao 2013/12/03 original 2014/02/12 update 2014/11/04 update.
Feb. 7, 2007First GLAST symposium1 Measuring the PSF and the energy resolution with the GLAST-LAT Calibration Unit Ph. Bruel on behalf of the beam test.
Detector Monte-Carlo ● Goal: Develop software tools to: – Model detector performance – Study background issues – Calculate event rates – Determine feasibility.
Trapped positrons and electrons observed by PAMELA Vladimir Mikhailov NRNU MEPHI, Moscow, Russia For PAMELA collaboration ICPPA 2015, PAMELA workshop,
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
CEBAF The Continuous Electron Beam Accelerating Facility (CEBAF) at JLab in Newport News, Virginia, is used to study the properties of quark matter. CEBAF.
Measurements of Cosmic-Ray Helium, Lithium and Beryllium Isotopes with the PAMELA- Experiment Wolfgang Menn University of Siegen On behalf of the PAMELA.
H, He, Li and Be Isotopes in the PAMELA-Experiment Wolfgang Menn University of Siegen On behalf of the PAMELA collaboration International Conference on.
Photon reconstruction and matching Prokudin Mikhail.
The method of the low-energy antiproton identification by stopping in the coordinate- sensitive PAMELA calorimeter 1 Svetlana Rodenko (MEPhI) Moscow International.
Pad design present understanding Tel Aviv University HEP Experimental Group Ronen Ingbir Collaboration High precision design Tel-Aviv Sep.05 1.
Geant4 Tracking Test (D. Lunesu)1 Daniela Lunesu, Stefano Magni Dario Menasce INFN Milano GEANT4 TRACING TESTs.
Inclusive Measurements of inelastic electron/positron scattering on unpolarized H and D targets at Lara De Nardo for the HERMES COLLABORATION.
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Lumical R&D progress report Ronen Ingbir.
Forward Tagger Simulations Implementation in GEMC Moller Shield Tracking Studies R. De Vita INFN –Genova Forward Tagger Meeting, CLAS12 Workshop, June.
MEIC Detector and IR Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
A new approach for the gamma tracking clustering by the deterministic annealing method François Didierjean IPHC, Strasbourg.
Detector / Interaction Region Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski Joint CASA/Accelerator and Nuclear Physics MEIC/ELIC Meeting.
BESIII offline software group Status of BESIII Event Reconstruction System.
Cosmic Ray Positron Fraction Observations during the A- Magnetic Solar Minimum John Clem and Paul Evenson* * Presenter AESOP Departing Esrange, Sweden.
Can we detect a marble tomb with cosmic muons ? Corinne Goy, Max Chefdeville, Jean Jacquemier, Yannis Karyotakis 21 December 2015.
Min Huang g2p/GEp Collaboration Meeting April 18, 2011.
by students Rozhkov G.V. Khalikov E.V. scientific adviser Iyudin A.F.
IPHC, Strasbourg / GSI, Darmstadt
AGILE as particle monitor: an update
JUNO Offline Geometry Management
Ahmed El Alaoui GDR Nucleon, Saclay, 8-9 April, 2007 Outline:
The Transition Radiation Detector for the PAMELA Experiment
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Checks of TOF Fiducial Cuts
GAMMA-400 performance a,bLeonov A., a,bGalper A., bKheymits M., aSuchkov S., aTopchiev N., bYurkin Y. & bZverev V. aLebedev Physical Institute of the Russian.
Introduction Goal: Can we reconstruct the energy depositions of the proton in the brain if we are able to reconstruct the photons produced during this.
GPAMELA Alessandro Bruno.
GLAST Large Area Telescope:
Secondary positrons and electrons measured by PAMELA experiment
Polarized WACS Experiment (E ) Using Compact Photon Source (CPS)
Cosmic-Ray Lithium and Beryllium Isotopes in the PAMELA-Experiment
Measurements of Cosmic-Ray Lithium and Beryllium Isotopes
for the PAMELA collaboration
JLEIC Detector Simulation Forward Ion Detection
How to stop a, b, g-rays and neutrons?
How to stop a, b, g-rays and neutrons?
Nicolo’ Masi, Andrea Tiseni TOF Group Bologna
Special Considerations for SIDIS
TOF Fiducial Cut on 325 +/- 25 MeV/c (++ Field)
Why do BLMs need to know the Quench Levels?
Higgs Factory Backgrounds
GEANT Simulations and Track Reconstruction
Multi-Purpose Particle and Heavy Ion Transport code System
GAMOS tutorial Plug-in’s Exercises
NKS2 Meeting with Bydzovsky NKS2 Experiment / Analysis Status
Physics event timing Use Pythia to generate hadronic decays at 125 GeV
Background Simulations at Fermilab
Presentation transcript:

Среда для моделирования спектрометра ПАМЕЛА в Geant4 (от PamVMC до Level3) The shell for PAMELA spectrometer simulation with Geant4 (from PamVMC up to Level3)

Параметры моделирования. Simulation parameters. Общие параметры General parameters nred Номер редакции Level2 (10) Level2 data reduction index user Имя пользователя User name vGeant Версия Geant4 Geant4 version phMod Физический лист Geant4 Physics list Geant4 Task Имя задачи (подкаталог) Task name (subfolder) MODE Всегда SIM (моделирование) SIM only (simulation)

Параметры моделирования. Simulation parameters. Флаги моделирования Simulation flags SIMClasses SG SpectraGenerator MC Моделирование PamVMC PamVMC simulation L2 Обработка до уровня Level2 Processing up to Level2 L3Classes Обработка до уровня Level3 См. перечень переменных Level3 Processing up to Level3 (See level3 variables list) Значение флагов моделирования Simulation flags possible values Не обрабатывать Do not process 1 Обрабатывать, если ещё не обработан Process if not yet processed 2 Обрабатывать всегда Process in any case

Параметры моделирования. Simulation parameters. Частицы и энергетическое распределение Particles and energy distribution T Тип частицы (в соответствии со списком на слайде 7) Particles type (according to the list on the 7th slide) Rmin – Rmax Минимальная и максимальная жёсткости (ГВ) Rmax=‘’ для моно линии Minimal and maximal rigidity (GV) Indicate only Rmax=‘’ for fixed rigidity Emin – Emax Минимальная и максимальная кинетическая энергия (ГэВ) Emax=‘’ для моно линии Minimal and maximal kinetic energy (GeV) Indicate only Emax=‘’ for fixed rigidity SP Основание спектра ‘’ – для моно энергичных линий ‘R’ – для жёсткости ‘E’ – для кин. энергии ‘F’ – для force-field Spectral basis ‘’ – for monoenergetic particles ‘R’ – for rigidity ‘E’ – for kinetic energy ‘F’ – force-field app. SPind Показатель спектра (для force-field – потенциал модуляции) Spectral index (modulation potential in force-field approximation)

Параметры моделирования. Simulation parameters. Начальные условия Initial conditions Xmin – Xmax Минимальная и максимальная координата площадки моделирования вдоль оси Х (в см) Minimum and maximum X-coordinates of the initial simulation plane (in cm) Ymin – Ymax Минимальная и максимальная координата площадки моделирования вдоль оси Y (в см) Minimum and maximum Y-coordinates of the initial simulation plane (in cm) Zc Положение площадки моделирования вдоль оси Z в системе координат прибора PAMELA (в см) Z-position of the initial simulation plane in PAMELA RF(cm) THmin – THmax Диапазон полярных углов (град.) Polar angles range (deg.) PHImin – PHImax Диапазон азимутальных углов (град.) Azimuth angels range (deg.) FA Преселектор (см. далее) Fiducial acceptance (see next slides)

Параметры моделирования. Simulation parameters. Другие параметры Other parameters TMask Номер маски трековой системы 0 – идеальная маска The tracker “mask” number 0 – ideal mask CMask Номер маски калориметра The calorimeter “mask” number Nev Число событий в файле Number of events N Порядковый номер файла File sequence number

Тип частиц. Particles type. pr proton de deuteron apr antiproton ade antideuteron tr tritium he3 helium-3 atr antitritium ahe3 antihelium-3 he4 helium-4 n neutron ahe4 antihelium-4 an anti-neutron ele electron pim π- pos positron pip π+ gm gamma kam K- kap K+ Nuclei from Li up to U X-Z Example Li-7 or Be-9

Преселектор. Fiducial acceptance. FA ≥ 0 & FA < 8.5 Алгоритм DoTrack определяет, проходит ли траектория частицы через трековую систему с отступлением от края магнита на величину FA. The DoTrack algorithm checks whether the particle trajectory is inside the tracking system within the indicated distance of FA from the edge of the magnet FA = 51 Траектория проходит через детекторы S11 и S12 с запасом 1 см с каждой стороны для обоих детекторов. The trajectory passes through the detectors S11 and S12 and is within a margin of 1 cm from each side of both detectors. FA = 52 Траектория проходит через детекторы S11, S12, S21 и S22 с запасом 1 см с каждой стороны (для всех детекторов). The trajectory passes through the detectors S11, S12, S21 and S22 and is within a margin of 1 cm from each side (for all detectors). FA = 53 Траектория проходит через детекторы S11, S12, S21, S22, а также через верхнюю плоскость трековой системы T1y и T1x с запасом 1 см с каждой стороны (для всех детекторов). The trajectory passes through the detectors S11, S12, S21, S22, as well as the upper plane of the track system T1y and T1x and is within a margin of 1 cm from each side (for all detectors). FA = 100 Запись в файл всех событий без предотбора Write into the file all events without preselection

Структура каталогов. Folders. (1) Пример. Example. /lustre/PAMELA/SimulationG4/10red/pamela/D_-35to35_-35to35_110_0to30_0to360_52/4.10.01.p02_FTFP_BERT/proton/Test/0p5_5_kin_F0p6 Пример. Example. Описание Description /lustre/PAMELA/SimulationG4 Каталог, содержащий среду и результаты моделирования The folder containing the simulation shell and results 10red Индекс редакции данных Level2 The Level2 data reduction index pamela Имя пользователя User name D_-35to35_-35to35_110_0to30_0to360_52 D или U – направление прилёта частиц (сверху Down или снизу Up), границы площадки моделирование (X и Y), положение площадки по оси Z, диапазоны углов Theta и Phi, флаг Fiducial Acceptance D or U - direction of incoming particle flight (D - downgoing, U - upgoing), the simulation plane boundaries along X axis and Y axis, Z position of the plane, the range of polar and azimuth angles, fiducial acceptance flag 4.10.01.p02_FTFP_BERT Версия Geant4 и физический лист Geant4 version and physics list proton Тип частицы (развёрнуто) Particles type (full name) Test Подкаталог задачи (Task) Task’s subfolder (Task) 0p5_5_kin_F0p6 Диапазон энергии (жёсткости), информация о спектре (если он моделируется) Energy (rigidity) interval, information about spectral shape (if not a mono line)

Структура каталогов. Folders. (2) Название. Name. Описание Description SG Файлы, полученные SpectraGenerator Files produced by SpectraGenerator XML Файлы XML (входные в PamVMC) XML files (needed by PamVMC) RAW Файлы с расширением root и pam, полученные при моделировании PamVMC Root and pam files produced by PamVMC simulation PamVMC Log-файлы PamVMC Log-files from PamVMC L0 Файлы уровня Level0 Level0 files L2 Файлы уровня Level2 Level2 files L3 Файлы уровня Level3 Level3 files INFO Расположение текстовых файлов с информацией об обработке Placement of text files with processing information Пример. Example. 100 Номер маски трековой системы (TMask) Tracker “mask” (TMask) number

Имя файлов. Filenames. Пример. Example. pr_0p05_50_kin_F0p6_250000_10 Структура. Structure. Описание Description pr Тип частицы Particle’s type 0p05_50_kin_F0p6 Диапазон энергий и информация о спектре Energy range and spectral shape 250000 Число запущенных частиц Number of simulated particles 10 Порядковый номер файла с такими именем Sequence number of file