Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q

Slides:



Advertisements
Similar presentations
Fluids & Bernoulli’s Equation Chapter Flow of Fluids There are two types of flow that fluids can undergo; Laminar flow Turbulent flow.
Advertisements

Literal Equations and Formulas
Solving Equations Containing To solve an equation with a radical expression, you need to isolate the variable on one side of the equation. Factored out.
Lesson 23 HEAD LOSS DEFINE the terms head loss, frictional loss, and minor losses. DETERMINE friction factors for various flow situations using the Moody.
Background 1. Energy conservation equation If there is no friction.
Major loss in Ducts, Tubes and Pipes
8.2 OBJECTIVES  Describe the appearance of laminar flow and turbulent flow  State the relationship used to compute the Reynolds number  Identify the.
The student is expected to:
Heat and Flow Technology I.
Chapter 8 Section 1.
and the like in the pipe or duct system.
Objectives Solve a formula for a given variable.
Chapter 4. Analysis of Flows in Pipes
Solving Equations Containing
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Solving Equations Containing
CTC 450 Review Energy Equation Pressure head Velocity head
Find: u [kPa] at point B D C B A Water Sand Silt Aquifer x
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
Solving Equations Containing
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Objective Solve quadratic equations by using square roots.
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Objectives Solve a formula for a given variable.
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Solving Equations Containing
Presentation transcript:

Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q 2.3 5.7 9.2 13.8 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 2.3 5.7 9.2 13.8 Find the flowrate, Q, in liters per second. [pause] In this problem, 2, non-pressurized tanks, ---

Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q 2.3 5.7 9.2 13.8 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 2.3 5.7 9.2 13.8 of known total head values, are connected by a ---

Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q 2.3 5.7 9.2 13.8 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 2.3 5.7 9.2 13.8 smooth pipe, of known length, and diameter.

Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q 2.3 5.7 9.2 13.8 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 2.3 5.7 9.2 13.8 [pause] Since the flowrate, Q, equals ---

Find: Q [L/s] L Q = V * A h1 h1 = 225 [m] h2 h2 = 175 [m] Q d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 the average velocity of flow times the cross-sectional area, the flowrate can be determined by calculating --- Q = V * A

Find: Q [L/s] L Q = V * A ƒ(d) h1 h1 = 225 [m] h2 h2 = 175 [m] Q d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 the area, which is a function of the diameter, and a fairly straight forward calculation, and by determining the --- Q = V * A ƒ(d)

Find: Q [L/s] L Q = V * A ƒ(d) ε ƒ(d, h1, h2, L, h1 h1 = 225 [m] h2 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 =1.02*10-6 s the velocity, which is a function of all the variables, and a bit more involved. [pause] Q = V * A ƒ(d) ε D ƒ(d, h1, h2, L, , , …)

Find: Q [L/s] L Q = V * A ƒ(d) h1 h1 = 225 [m] h2 h2 = 175 [m] Q d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 Let’s begin with the area, which equals --- Q = V * A ƒ(d)

Find: Q [L/s] π L Q = V * A ƒ(d)= d2 h1 h1 = 225 [m] h2 h2 = 175 [m] Q d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 PI divided by 4, times the diameter of the pipe, squared. If the problem doesn’t specifically state --- π Q = V * A ƒ(d)= d2 * 4

Find: Q [L/s] π L Q = V * A ƒ(d)= d2 t do di h1 h1 = 225 [m] h2 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 an inside diameter, outside side diameter, or mention the wall thickness, --- π Q = V * A ƒ(d)= d2 * t do 4 di pipe

Find: Q [L/s] π L Q = V * A ƒ(d)= d2 t do d di h1 h1 = 225 [m] h2 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 we’ll assume the given diameter, d, equals the inside diameter, --- π Q = V * A ƒ(d)= d2 * t do 4 d di pipe

Find: Q [L/s] π L Q = V * A ƒ(d)= d2 t do d di h1 h1 = 225 [m] h2 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 and can be used to find the flow area of a pressurized pipe. π Q = V * A ƒ(d)= d2 * t do 4 d di pipe

Find: Q [L/s] π L Q = V * A ƒ(d)= d2 t do d di h1 h1 = 225 [m] h2 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 The area equals 7.854 times 10 to the –3, meters squared. [pause] π Q = V * A ƒ(d)= d2 * t do 4 d di A=7.854*10-3 [m2] pipe

Find: Q [L/s] π L Q = V * A ƒ(d)= d2 t do d di h1 h1 = 225 [m] h2 d = 10 [cm] h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 L Q “smooth pipe” m2 s =1.02*10-6 Next we’ll determine the velocity, v. π Q = V * A ƒ(d)= d2 * t do 4 d di A=7.854*10-3 [m2] pipe

Find: Q [L/s] L Q = V * A h1 h1 = 225 [m] h2 h2 = 175 [m] Q d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 Q “smooth pipe” m2 s =1.02*10-6 Our strategy will be to utilize --- Q = V * A

Find: Q [L/s] ? L Q = V * A h1 h1 = 225 [m] h2 h2 = 175 [m] Q d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 2 equations, common to pressure flow problems.

Find: Q [L/s] ? L Q = V * A hL=f h1 h1 = 225 [m] h2 h2 = 175 [m] Q * * d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f The Darcy-Weisbach equation for headloss, --- * * d 2*g

Find: Q [L/s] ? L Q = V * A hL=f Re= h1 h1 = 225 [m] h2 h2 = 175 [m] Q d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f and the equation for Reynold’s number ---- * * d 2*g V*d Re=

Find: Q [L/s] ? L Q = V * A hL=f Re= h1 h1 = 225 [m] h2 h2 = 175 [m] Q d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f used with the Moody Diagram. [pause] Let’s begin with the --- * * d 2*g f V*d Re= ε d Re

Find: Q [L/s] ? L Q = V * A hL=f Re= h1 h1 = 225 [m] h2 h2 = 175 [m] Q d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f headloss equation, and determine our known variables. [pause] * * d 2*g f V*d Re= ε d Re

Find: Q [L/s] ? L Q = V * A hL=f h1 h1 = 225 [m] h2 h2 = 175 [m] Q * * d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f The total headloss through the pipe equals --- * * d 2*g

Find: Q [L/s] ? L Q = V * A hL=f h1-h2 h1 h1 = 225 [m] h2 h2 = 175 [m] d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f the total head at Tank 1, minus the total head at Tank 2. * * d 2*g h1-h2

Find: Q [L/s] ? L Q = V * A hL=f h1-h2 h1 h1 = 225 [m] h2 h2 = 175 [m] d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f 225 meters, minus 175 meters, equals --- * * d 2*g h1-h2 225 [m]-175 [m]

Find: Q [L/s] ? L Q = V * A hL=f h1-h2 h1 h1 = 225 [m] h2 h2 = 175 [m] d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f 50 meters. * * d 2*g h1-h2 225 [m]-175 [m] 50 [m]

Find: Q [L/s] ? L Q = V * A hL=f h1-h2 h1 h1 = 225 [m] h2 h2 = 175 [m] d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f hL=50 [m] The problem statement provides, the length, L, --- * * d 2*g h1-h2 225 [m]-175 [m] 50 [m]

Find: Q [L/s] ? L Q = V * A hL=f h1-h2 h1 h1 = 225 [m] h2 h2 = 175 [m] d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f hL=50 [m] the diameter, d, [pause] and we know the --- * * d 2*g h1-h2 225 [m]-175 [m] 50 [m]

Find: Q [L/s] ? L Q = V * A hL=f h1-h2 h1 h1 = 225 [m] h2 h2 = 175 [m] d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f hL=50 [m] m gravitational acceleration, g. The variables we don’t know are --- * * 9.81 d 2*g s2 h1-h2 225 [m]-175 [m] 50 [m]

Find: Q [L/s] ? L Q = V * A hL=f h1-h2 h1 h1 = 225 [m] h2 h2 = 175 [m] d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f hL=50 [m] m the friction factor, f, and the velocity, v. [pause] If these unknown variables are isolated, the equation becomes, --- * * 9.81 d 2*g s2 h1-h2 225 [m]-175 [m] 50 [m]

Find: Q [L/s] ? L Q = V * A hL=f f * V2 = h1 h1 = 225 [m] h2 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s =1.02*10-6 L V2 hL=f hL=50 [m] the friction factor time the velocity squared, equals, the headloss times the diameter, times 2g, all divided by the length. * * d 2*g hL*D*2*g f * V2 = L

Find: Q [L/s] ? L Q = V * A hL=f f * V2 = h1 h1 = 225 [m] h2 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s m =1.02*10-6 9.81 L V2 s2 hL=f hL=50 [m] Plugging in the values we just solved for, the right hand side --- * * d 2*g hL*d*2*g f * V2 = L

Find: Q [L/s] ? L Q = V * A hL=f f * V2 = f * V2 =0.04905 h1 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s m =1.02*10-6 9.81 L V2 s2 hL=f hL=50 [m] of the equation equals 0.04905 meters squared per second squared. [pause] The second equation is --- * * d 2*g hL*d*2*g f * V2 = L m2 f * V2 =0.04905 s2

Find: Q [L/s] ? L Q = V * A hL=f Re= f * V2 = f * V2 =0.04905 h1 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s m =1.02*10-6 9.81 L V2 s2 hL=f hL=50 [m] Reynolds's number equals the velocity times the diameter, divided by the kinematic viscosity. * * d 2*g hL*d*2*g V*d Re= f * V2 = L m2 f * V2 =0.04905 s2

Find: Q [L/s] ? L Q = V * A hL=f Re= f * V2 = f * V2 =0.04905 h1 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s m =1.02*10-6 9.81 L V2 s2 hL=f hL=50 [m] Since the problem provides the diameter, d, and kinematic viscosity, nu, we’ll again isolate the --- * * d 2*g hL*d*2*g V*d Re= f * V2 = L m2 f * V2 =0.04905 s2

Find: Q [L/s] ? L Q = V * A hL=f Re= = f * V2 = f * V2 =0.04905 h1 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s m =1.02*10-6 9.81 L V2 s2 hL=f hL=50 [m] unknown variables on one side of the equation, --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L m2 f * V2 =0.04905 s2

Find: Q [L/s] ? L Q = V * A hL=f Re= = f * V2 = f * V2 =0.04905 h1 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 s m =1.02*10-6 9.81 L V2 s2 hL=f hL=50 [m] plug in the known variables, and get the velocity --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L m2 f * V2 =0.04905 s2

Find: Q [L/s] ? L Q = V * A hL=f Re= = f * V2 = f * V2 =0.04905 h1 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 m =1.02*10-6 9.81 s L V2 s2 hL=f hL=50 [m] divided by the Reynolds’s number, equals 1.02 times 10 to the –5 meters per second. * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m s m2 f * V2 =0.04905 =1.02*10-5 s2 Re

Find: Q [L/s] ? L Q = V * A hL=f Re= = f * V2 = f * V2 =0.04905 h1 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 m =1.02*10-6 9.81 s L V2 s2 hL=f hL=50 [m] Right now, we effective have 2 equations, and 3 unknown variables. Those unknown variables are the --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m s m2 f * V2 =0.04905 =1.02*10-5 s2 Re

Find: Q [L/s] ? L Q = V * A hL=f Re= = f * V2 = f * V2 =0.04905 h1 d = 10 [cm] L h1 h1 = 225 [m] Tank d h2 h2 = 175 [m] 1 Tank L = 2,000 [m] 2 ? Q “smooth pipe” Q = V * A m2 m =1.02*10-6 9.81 s L V2 s2 hL=f hL=50 [m] friction factor, velocity, and Reynolds’s number. The last piece of information we’ll need is the --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 h1 = 225 [m] d = 10 [cm] f Moody h1 = 225 [m] Diagram h2 = 175 [m] ε d L = 2,000 [m] Re “smooth pipe” m2 m =1.02*10-6 9.81 s L V2 s2 hL=f hL=50 [m] Moody Diagram, which relates the friction factor to the Reynolds’s number, --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 h1 = 225 [m] d = 10 [cm] f Moody h1 = 225 [m] Diagram h2 = 175 [m] ε d L = 2,000 [m] Re “smooth pipe” m2 =1.02*10-6 s L V2 hL=f hL=50 [m] based on the relative roughness, epsilon over d. The problem states the pipe --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 h1 = 225 [m] d = 10 [cm] f Moody h1 = 225 [m] Diagram h2 = 175 [m] ε d L = 2,000 [m] Re “smooth pipe” m2 =1.02*10-6 s L V2 hL=f hL=50 [m] is a smooth pipe, which means the roughness can be thought of, --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 h1 = 225 [m] d = 10 [cm] f Moody h1 = 225 [m] Diagram h2 = 175 [m] ε =0 d L = 2,000 [m] Re “smooth pipe” m2 =1.02*10-6 s L V2 hL=f hL=50 [m] as zero. Therefore, we’ll use the bottom-most relative roughness line, for turbulent flow, --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 h1 = 225 [m] d = 10 [cm] f Moody h1 = 225 [m] Diagram h2 = 175 [m] ε =0 d L = 2,000 [m] smooth Re “smooth pipe” m2 =1.02*10-6 s L V2 hL=f hL=50 [m] on the Moody Diagram, as our third and final relationship needed to solve for the three unknown variables. [pause] The following method, --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 h1 = 225 [m] d = 10 [cm] f h1 = 225 [m] h2 = 175 [m] ε L = 2,000 [m] smooth =0 d “smooth pipe” Re m2 =1.02*10-6 s L V2 hL=f hL=50 [m] is just one method, among many, to iteratively solve for the unknown variables. * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 h1 = 225 [m] d = 10 [cm] f h1 = 225 [m] h2 = 175 [m] ε L = 2,000 [m] smooth =0 d “smooth pipe” Re m2 =1.02*10-6 s L V2 hL=f hL=50 [m] Looking back at our first equation, we’ll solve for the velocity term, which equals, ---- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 ε =0 hL=50 [m] smooth =0 d Re m2 =1.02*10-6 s L V2 hL=f hL=50 [m] The square root of the quantity 0.04905 meters squared per seconds squared, divided by the friction factor. [pause] Next, the second equation --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 ε =0 hL=50 [m] smooth =0 d Re m2 =1.02*10-6 s L V2 hL=f hL=50 [m] is solved for the Reynolds’s number, which equals, --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re hL=f Re= = f * V2 = f * V2 =0.04905 ε =0 hL=50 [m] smooth =0 m d 1.02*10-5 s Re m2 =1.02*10-6 s L V2 hL=f hL=50 [m] the velocity divided by 1.02 times 10 to the –5, meters per second. [pause] Then, a table will be set up --- * * d 2*g V hL*d*2*g V*d Re= = f * V2 = Re d L V m2 m f * V2 =0.04905 =1.02*10-5 s2 Re s

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f to track the calculations as we search for the most accurate friction factor, to the nearest thousandth. The method we’ll use, is as follows. First, ---

Find: Q [L/s] f Re f f1 V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f f1 we’ll guess a reasonable value for the friction factor, f sub 1. [pause] Then, ---

Find: Q [L/s] f Re f f1 V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f f1 we’ll solve for the corresponding velocity, using the first equation, ---

Find: Q [L/s] f Re f f1 v1 V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f f1 add this velocity value to the table, and then use it to solve for the --- v1

Find: Q [L/s] f Re f f1 v1 V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f f1 Reynolds number, using the second equation, --- v1

Find: Q [L/s] f Re f f1 v1 V(f) [m/s] Re(f) - Re(v) Re(f)1 - Re(v)1 0.04905 s2 f V= f V Re= m s 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f f1 and add that value to the table. [pause] Knowing we’re dealing with a smooth pipe, --- v1 Re(f)1 - Re(v)1

Find: Q [L/s] f Re f f1 v1 f1 V(f) [m/s] Re(f) - Re(v) Re(f)1 - Re(v)1 0.04905 s2 f V= f V Re= f1 m s 1.02*10-5 Re Re(f)1 f V(f) [m/s] Re(f) - Re(v) next f f1 a second Reynolds number will be determined using the friction factor and Moody diagram. v1 Re(f)1 - Re(v)1

Find: Q [L/s] f Re f f1 v1 f1 V(f) [m/s] Re(f) - Re(v) Re(f)1 - Re(v)1 0.04905 s2 f V= f V Re= f1 m s 1.02*10-5 Re Re(f)1 f V(f) [m/s] Re(f) - Re(v) next f f1 The difference between these two Reynolds numbers represents the --- v1 Re(f)1 - Re(v)1

Find: Q [L/s] f Re f f1 v1 f1 V(f) [m/s] Re(f) - Re(v) Re(f)1 - Re(v)1 0.04905 s2 f V= f V Re= f1 m s 1.02*10-5 Re Re(f)1 f V(f) [m/s] Re(f) - Re(v) next f f1 magnitude of error between the actual friction factor, f, and the evaluated friction factor, f sub 1. And the sign of this difference indicates --- v1 Re(f)1 - Re(v)1

Find: Q [L/s] f Re f f1 v1 f1 V(f) [m/s] Re(f) - Re(v) Re(f)1 - Re(v)1 0.04905 s2 f V= f V Re= f1 m s 1.02*10-5 Re Re(f)1 f V(f) [m/s] Re(f) - Re(v) next f f1 whether the next friction factor should be greater than or less than the friction factor just evaluated. v1 Re(f)1 - Re(v)1 or

Find: Q [L/s] f Re f f1 v1 f2 f1 V(f) [m/s] Re(f) - Re(v) 0.04905 s2 f V= f V Re= f1 m s 1.02*10-5 Re Re(f)1 f V(f) [m/s] Re(f) - Re(v) next f f1 Then the process repeats, using a second friction factor, --- v1 Re(f)1 - Re(v)1 or f2

Find: Q [L/s] f Re f f1 v1 f2 v2 f1 V(f) [m/s] Re(f) - Re(v) 0.04905 s2 f V= f V Re= f1 m s 1.02*10-5 Re Re(f)1 f V(f) [m/s] Re(f) - Re(v) next f f1 which generates a second velocity, v1 Re(f)1 - Re(v)1 or f2 v2

Find: Q [L/s] f Re f f1 v1 f2 v2 f1 V(f) [m/s] Re(f) - Re(v) 0.04905 s2 f V= f V Re= f1 m s 1.02*10-5 Re Re(f)1 f V(f) [m/s] Re(f) - Re(v) next f f1 and a tighter bound on the most accurate value of f. v1 Re(f)1 - Re(v)1 or f2 v2 Re(f)2 - Re(v)2 or

Find: Q [L/s] f Re f f1 v1 f2 v2 f3 v3 f1 V(f) [m/s] Re(f) - Re(v) 0.04905 s2 f V= f V Re= f1 m s 1.02*10-5 Re Re(f)1 f V(f) [m/s] Re(f) - Re(v) next f f1 The more iterations, the closer we get to the actual friction factor. v1 Re(f)1 - Re(v)1 or f2 v2 Re(f)2 - Re(v)2 or f3 v3 Re(f)3 - Re(v)3 or

Find: Q [L/s] f Re f f1 v1 f2 v2 f3 v3 f4 v4 f1 V(f) [m/s] 0.04905 s2 f V= f V Re= f1 m s 1.02*10-5 Re Re(f)1 f V(f) [m/s] Re(f) - Re(v) next f f1 [pause] Now for some actual numbers, --- v1 Re(f)1 - Re(v)1 or f2 v2 Re(f)2 - Re(v)2 or f3 v3 Re(f)3 - Re(v)3 or f4 v4 Re(f)4 - Re(v)4

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 we’ll first try a friction factor of 0.025. 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 Solving for velocity, we get, --- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 1.401 meters per second. Next, Reynolds number is calculated --- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 using this velocity [pause] And the second Reynolds number is determined, --- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 from the friction factor and the diagram. This second Reynolds number is an approximation. 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 The difference between Reynolds numbers, is a large negative number, --- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 -117,352 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 so the second friction factor will be much smaller than the first. Next we’ll try --- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 -117,352 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 0.015, for f. The velocity and Reynolds numbers --- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 are calculated. And the third value of f should be --- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 slightly larger than the second. [pause] Splitting the difference, ---- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 1.699 135,000 - 166,530 0.017 22,715 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 0.020 is evaluated, --- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 1.566 60,000 - 153,533 0.020 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 and is too large, --- 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 0.020 1.566 60,000 - 153,533 1.699 135,000 - 166,530 0.017 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 f equal to 0.017 is also too large, but we’re getting closer. 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 0.020 1.566 60,000 - 153,533 0.017 1.699 135,000 - 166,530 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f Re f V(f) [m/s] Re(f) - Re(v) 0.04905 V= f V Re= 1.02*10-5 Re f V(f) [m/s] Re(f) - Re(v) next f 0.025 0.016 is the most accurate value for f, rounded to the nearest thousandth. [pause] 1.401 20,000 - 137,352 1.808 200,000 - 177,285 0.015 0.020 1.566 60,000 - 153,533 0.017 1.699 135,000 - 166,530 0.016 1.751 183,000 - 171,656

Find: Q [L/s] f f V(f) [m/s] 0.04905 V= f V Re= 1.02*10-5 0.025 1.401 By knowing the velocity in the pipe, we can now solve --- 1.401 1.808 0.015 0.020 1.566 0.017 1.699 0.016 1.751

Find: Q [L/s] f π f Q = V * A A= d2 V(f) [m/s] * 4 7.854*10-3 [m2] 0.04905 s2 f V= f V Re= m s 1.02*10-5 π f V(f) [m/s] Q = V * A A= d2 * 4 0.025 the original equation, for flowrate, by multiplying ---- 1.401 7.854*10-3 [m2] 1.808 0.015 0.020 1.566 0.017 1.699 0.016 1.751

Find: Q [L/s] f π f Q = V * A A= d2 V(f) [m/s] * 4 7.854*10-3 [m2] 0.04905 s2 f V= f V Re= m s 1.02*10-5 π f V(f) [m/s] Q = V * A A= d2 * 4 0.025 1.751, meters per second, by 7.854 times 10 to the –3, meters squared. The flowrate equals, --- 1.401 7.854*10-3 [m2] 1.808 0.015 0.020 1.566 0.017 1.699 0.016 1.751

Find: Q [L/s] f π f Q = V * A A= d2 V(f) [m/s] * 4 7.854*10-3 [m2] 0.04905 s2 f V= f V Re= m s 1.02*10-5 π f V(f) [m/s] Q = V * A A= d2 * 4 0.025 0.01375 meters cubed per second, or --- 1.401 7.854*10-3 [m2] 1.808 0.015 m3 0.020 1.566 Q = 0.01375 s 0.017 1.699 0.016 1.751

Find: Q [L/s] f π f Q = V * A A= d2 V(f) [m/s] * 4 7.854*10-3 [m2] 0.04905 s2 f V= f V Re= m s 1.02*10-5 π f V(f) [m/s] Q = V * A A= d2 * 4 0.025 13.75 liters per second. [pause] 1.401 7.854*10-3 [m2] 1.808 0.015 m3 L 0.020 1.566 Q = 0.01375 * 1,000 s m3 0.017 1.699 Q = 13.75 [L/s] 0.016 1.751

Find: Q [L/s] π f Q = V * A A= d2 2.3 5.7 9.2 13.8 V(f) [m/s] * 4 0.04905 s2 2.3 5.7 9.2 13.8 V= f V Re= m s 1.02*10-5 π f V(f) [m/s] Q = V * A A= d2 * 4 0.025 When reviewing the possible solutions, --- 1.401 7.854*10-3 [m2] 1.808 0.015 m3 L 0.020 1.566 Q = 0.01375 * 1,000 s m3 0.017 1.699 Q = 13.75 [L/s] 0.016 1.751

Find: Q [L/s] π AnswerD f Q = V * A A= d2 2.3 5.7 9.2 13.8 V(f) [m/s] 0.04905 s2 2.3 5.7 9.2 13.8 V= f AnswerD V Re= m s 1.02*10-5 π f V(f) [m/s] Q = V * A A= d2 * 4 0.025 the answer is D. 1.401 7.854*10-3 [m2] 1.808 0.015 m3 L 0.020 1.566 Q = 0.01375 * 1,000 s m3 0.017 1.699 Q = 13.75 [L/s] 0.016 1.751

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4