Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma  C.A.M. Huser, M.Sc., M. Peacock, M.E. Davies,

Slides:



Advertisements
Similar presentations
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
Advertisements

Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes  J. Kim, M. Xu, R. Xo, A. Mates, G.L.
B. Bai, Y. Li  Osteoarthritis and Cartilage 
CCN family 2/connective tissue growth factor (CCN2/CTGF) stimulates proliferation and differentiation of auricular chondrocytes  T. Fujisawa, Ph.D., D.D.S.,
Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates.
IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage  P. Behrendt, A. Preusse-Prange,
L. Ding, E. Heying, N. Nicholson, N. J. Stroud, G. A. Homandberg, J. A
Differential effects of tumor necrosis factor-α and interleukin-1β on cell death in human articular chondrocytes  B. Caramés, Ph.D., M.J. López-Armada,
M. Z. Ilic, Ph. D. , B. Martinac, Ph. D. , T. Samiric, Ph. D. , C. J
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Histone deacetylase inhibitors suppress interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes  N. Chabane, M.Sc.,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1  I.M. Khan,
The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: ex vivo evaluation of human cartilage tissue after in vivo treatment  T.N.
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein  Y. Uehara, J. Hirose, S.
K.A. Payne, D.M. Didiano, C.R. Chu  Osteoarthritis and Cartilage 
Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport.
A.J. McGregor, B.G. Amsden, S.D. Waldman  Osteoarthritis and Cartilage 
L.-H. Weng, C.-J. Wang, J.-Y. Ko, Y.-C. Sun, Y.-S. Su, F.-S. Wang 
J.G Costouros, M.D., A.C Dang, H.T Kim, M.D., Ph.D. 
Promotion of the intrinsic damage–repair response in articular cartilage by fibroblastic growth factor-2  F.M.D. Henson, Ph.D., E.A. Bowe, Ph.D., M.E.
Biochemical effects of two different hyaluronic acid products in a co-culture model of osteoarthritis  D.D. Greenberg, M.D., A. Stoker, Ph.D., S. Kane,
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Characterization of mature vs aged rabbit articular cartilage: analysis of cell density, apoptosis-related gene expression and mechanisms controlling.
Glutamine protects articular chondrocytes from heat stress and NO-induced apoptosis with HSP70 expression  H. Tonomura, M.D., K.A. Takahashi, M.D., Ph.D.,
Oxidative stress induces expression of osteoarthritis markers procollagen IIA and 3B3(−) in adult bovine articular cartilage  I.M. Khan, Ph.D., S.J. Gilbert,
Viability and volume of in situ bovine articular chondrocytes—changes following a single impact and effects of medium osmolarity  Dr Peter G. Bush, Ph.D.,
Comparison of mechanical debridement and radiofrequency energy for chondroplasty in an in vivo equine model of partial thickness cartilage injury  R.B.
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes 
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
PCB126 induces apoptosis of chondrocytes via ROS-dependent pathways
Y. Zhou, L. Resutek, L. Wang, X. Lu  Osteoarthritis and Cartilage 
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
C. Zingler, H.-D. Carl, B. Swoboda, S. Krinner, F. Hennig, K. Gelse 
M. Cucchiarini, H. Madry, E.F. Terwilliger 
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
L. C. Davies, B. Sc. , Ph. D. , E. J. Blain, B. Sc. , Ph. D. , B
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion 
Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes  J. Kim, M. Xu, R. Xo, A. Mates, G.L.
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis  T. Vinardell, D.V.M., I.P.S.A.V., M.Sc.,
Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced.
A.L. McNulty, B.T. Estes, R.E. Wilusz, J.B. Weinberg, F. Guilak 
M. Hufeland, M. Schünke, A.J. Grodzinsky, J. Imgenberg, B. Kurz 
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Synergistic effect of chondroitin sulfate and cyclic pressure on biochemical and morphological properties of chondrocytes from articular cartilage  G.
Dynamic compression counteracts IL-1β-induced release of nitric oxide and PGE2by superficial zone chondrocytes cultured in agarose constructs  T.T Chowdhury,
Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs  J.T. Connelly, Ph.D., C.G. Wilson,
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis  B.Y. Chan, E.S. Fuller, A.K. Russell, S.M. Smith, M.M. Smith,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
Effect of a glucosamine derivative on impact-induced chondrocyte apoptosis in vitro. A preliminary report  C.A.M. Huser, Ph.D., M.E. Davies, Ph.D.  Osteoarthritis.
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Influence of pro-inflammatory (IL-1α, IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4) cytokines on chondrocyte function  A.J Schuerwegh, M.D., Ph.D.,
Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation  C. Nguyen, M.
Mechanical injury of bovine cartilage explants induces depth-dependent, transient changes in MAP kinase activity associated with apoptosis  D.H. Rosenzweig,
Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment  P.K. Bos, M.D., Ph.D., N. Kops, B.Sc., J.A.N.
Most patients gain weight in the 2 years after total knee arthroplasty: comparison to a healthy control group  J.A. Zeni, L. Snyder-Mackler  Osteoarthritis.
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
Mitoprotection as a strategy to prevent chondrocyte death and cartilage degeneration following mechanical injury  M.L. Delco, E.D. Bonnevie, H.H. Szeto,
C. Pascual Garrido, A. A. Hakimiyan, L. Rappoport, T. R. Oegema, M. A
Cartilage degeneration in different human joints
Inhibition of adenosine kinase attenuates interleukin-1- and lipopolysaccharide-induced alterations in articular cartilage metabolism  Raina Petrov, B.S.,
Osteoarthritis year in review 2016: mechanics
Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage 
Presentation transcript:

Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma  C.A.M. Huser, M.Sc., M. Peacock, M.E. Davies, Ph.D.  Osteoarthritis and Cartilage  Volume 14, Issue 10, Pages 1002-1010 (October 2006) DOI: 10.1016/j.joca.2006.03.012 Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 TEM photomicrographs of individual chondrocytes in sections of superficial cartilage explants cultured for 48h. (A) Healthy chondrocyte in unimpacted control (5000×). (B) Apoptotic chondrocyte in an impacted cartilage explant (6000×), showing evidence of nuclear blebbing (*) and apoptotic bodies (arrows). N=nucleus. Osteoarthritis and Cartilage 2006 14, 1002-1010DOI: (10.1016/j.joca.2006.03.012) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Representative histological sections of cartilage explants incubated with the specific caspase-3 substrate PhiPhiLux G1D2 (green), and counterstained with DAPI (blue), after 12h of culture. A and B are unimpacted controls, C and D were impacted. A and C are merge images of DAPI and PhiPhiLux signals, B and D are PhiPhiLux G1D2 signal only. White arrows point to cells where caspase-3 is active. Original magnification 400×. Osteoarthritis and Cartilage 2006 14, 1002-1010DOI: (10.1016/j.joca.2006.03.012) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Representative histological sections of cartilage explants showing effect of a single-impact load and subsequent culture for 48h on chondrocyte death. TUNEL-positive cells appear dark blue (dead), and live cells appear pink due to safranin ‘O’ nuclear counterstain. (A) Unimpacted control. (B–E) Impacted from 50mm, and pre-incubation with DMEM (B), caspase-3 (C), caspase-8 (D) and caspase-9 (E) inhibitors 3h prior to impact. Original magnification 500×. Osteoarthritis and Cartilage 2006 14, 1002-1010DOI: (10.1016/j.joca.2006.03.012) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 Effect of a single-impact load and pre-incubation with specific inhibitors of caspase-3 (C3), caspase-8 (C8) and caspase-9 (C9) on the percentage of TUNEL-positive chondrocytes in the superficial zone after 48h in culture. *Represents a significant difference from 0mm non-impacted control , and #represents a significant difference from 50 mm impacted, untreated control (P<0.05). Osteoarthritis and Cartilage 2006 14, 1002-1010DOI: (10.1016/j.joca.2006.03.012) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Effect of a single-impact load and pre-incubation with inhibitors of caspase-3 (C3), caspase-8 (C8) and caspase-9 (C9) on the percentage weight gain of cartilage explants after 48h in culture. *Represents a significant difference from 0mm non-impacted control (P<0.05). Osteoarthritis and Cartilage 2006 14, 1002-1010DOI: (10.1016/j.joca.2006.03.012) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Effect of a single-impact load and pre-incubation with inhibitors of caspase-3 (C3), caspase-8 (C8) and caspase-9 (C9) on the amount of GAG released into the media (μg/mg of cartilage) after 48h in culture. *Represents a significant difference from 0mm non-impacted control (P<0.05). Osteoarthritis and Cartilage 2006 14, 1002-1010DOI: (10.1016/j.joca.2006.03.012) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 7 Sequence of cellular events leading to apoptosis-like chondrocyte death following a single-impact load in equine articular cartilage explants, as hypothesised from results obtained in this study. A single-impact load leads to yet undetermined cellular stress, which results in caspase-9 activation. Caspase-9 then activates the effector caspase-3, which directly causes apoptosis-like cell death. Osteoarthritis and Cartilage 2006 14, 1002-1010DOI: (10.1016/j.joca.2006.03.012) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions