Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,

Slides:



Advertisements
Similar presentations
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Advertisements

Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Early genetic restoration of lubricin expression in transgenic mice mitigates chondrocyte peroxynitrite release and caspase-3 activation  K.M. Larson,
X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E
Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage  A.-C. Bay-Jensen,
Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics 
Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running  T.J. Mosher, Y. Liu, C.M. Torok 
Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model  M.I. Menendez, D.J. Clark,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Diffusion of Gd-DTPA2− into articular cartilage
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
T. Maerz, M. D. Newton, K. Kristof, O. Motovylyak, J. S. Fischgrund, D
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
M. Siebelt, A. E. van der Windt, H. C. Groen, M. Sandker, J. H
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative.
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
K.A. Payne, D.M. Didiano, C.R. Chu  Osteoarthritis and Cartilage 
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
Cartilage MRI T2∗ relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease  C.-Y. Wang, Y.-J. Peng,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
M. Siebelt, J. van Tiel, J. H. Waarsing, T. M. Piscaer, M
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Contrast Enhanced Computed Tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage  P.N. Bansal, N.S.
Quantitative assessment of articular cartilage morphology via EPIC-μCT
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo.
Volumetric and semiquantitative assessment of MRI-detected subchondral bone marrow lesions in knee osteoarthritis: a comparison of contrast-enhanced and.
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model  S. Elmorsy, T. Funakoshi, F. Sasazawa,
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical.
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC  J.J. Stubendorff, E. Lammentausta,
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
UTE bi-component analysis of T2* relaxation in articular cartilage
H. J. Nieminen, T. Ylitalo, S. Kauppinen, E. Hæggström, M. Finnilä, S
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
Pretreatment of periosteum with TGF-β1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits 
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
Quantitative MR T2 measurement of articular cartilage to assess the treatment effect of intra-articular hyaluronic acid injection on experimental osteoarthritis.
Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis  B. Doyran, W. Tong,
Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced.
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling  S. Kudo, H. Mizuta,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
Racial differences in biochemical knee cartilage composition between African-American and Caucasian-American women with 3 T MR-based T2 relaxation time.
In vivo imaging of cartilage degeneration using μCT-arthrography
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition  M. Son, S.B. Goodman,
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
K.L. Caldwell, J. Wang  Osteoarthritis and Cartilage 
Correlation between the MR T2 value at 4
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
Cartilage degeneration in different human joints
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Y. Akasaki, A. Hasegawa, M. Saito, H. Asahara, Y. Iwamoto, M.K. Lotz 
Presentation transcript:

Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg, M.E. Levenston  Osteoarthritis and Cartilage  Volume 18, Issue 1, Pages 65-72 (January 2010) DOI: 10.1016/j.joca.2009.07.014 Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Optimization of incubation time for EPIC-μCT in the rat distal femur. Time course of central cartilage attenuation (n=3, mean±SD). The stabilization of central cartilage attenuation indicated that 30min of incubation was sufficient for Hexabrix to reach equilibration. #P<0.01 vs 5min, *P<0.05 vs 10min. Osteoarthritis and Cartilage 2010 18, 65-72DOI: (10.1016/j.joca.2009.07.014) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Sagittal sections of baseline μCT scan (Left); EPIC-μCT scan (Middle); and histological staining with safranin-O (Right) of the same femur from a 4-week old rat. The baseline μCT scan without contrast agent failed to distinguish cartilage from other soft tissues and all soft tissues were presented in blue (Left). EPIC-μCT clearly distinguished cartilage from bone and adjacent soft tissues (Middle). Articular cartilage had a lower contrast agent content and thus X-ray attenuation (140, green and yellow) compared to other soft tissues (240, dim red). Safranin-O staining of the same femur showed cartilage in dark red color and other soft tissues in green color (Right). Osteoarthritis and Cartilage 2010 18, 65-72DOI: (10.1016/j.joca.2009.07.014) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Time course of central cartilage attenuation during chondroitinase ABC digestion. (A) Representative EPIC-μCT images of femoral articular cartilage after digestion with chondroitinase ABC for 0, 10, 30 and 60min cumulative exposure times. Average attenuation expressed in threshold units is shown in parentheses. (B) The central cartilage attenuation of femoral articular cartilage during intermittent chondroitinase ABC digestion for cumulative exposure times up to 120min (n=4, mean±SD). #P<0.05 vs undigested cartilage (time=0). Osteoarthritis and Cartilage 2010 18, 65-72DOI: (10.1016/j.joca.2009.07.014) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 EPIC-μCT images and corresponding histological sections show similar patterns of changes in sGAG content with age and digestion. (A–F): Representative sagittal sections of undigested (A–C) and digested (D–F) distal femora from EPIC-μCT imaging for male Wistar rats at 4-, 8- and 16-weeks of age. The insets display magnified images of the central regions of the condyles. Normal cartilage, characterized by high sGAG content and low attenuation, appeared in green, while the digested cartilage, characterized by low sGAG content and high attenuation, appeared in yellow-red. (G–L): Representative safranin-O stained sagittal sections of undigested (G–I) and digested (J–L) distal femora from male Wistar rats at 4-, 8- and 16-weeks of age. Normal cartilage exhibited a dense distribution of sGAGs (red). In contrast, digested cartilage exhibited visible decreases in sGAG staining progressing from the superficial zone to the deep zone. Osteoarthritis and Cartilage 2010 18, 65-72DOI: (10.1016/j.joca.2009.07.014) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Quantitative analysis of changes in cartilage attenuation and sGAG-OD with age and digestion. (A) Average EPIC-μCT attenuation of the cartilage layer for undigested left femora, undigested right femora, and digested right femora for each age group (n=5, mean±SD). *P<0.01 vs 4-week old rats, #P<0.05 vs 8-week old rats, ▵P<0.01 vs undigested (left or right) femora. (B) Average sGAG-OD for central condyle region of undigested left femora and digested right femora for each age group (n=5, mean±SD). *P<0.01 vs 4-week old rats, ▵P<0.01 vs undigested left femora. (C) Linear regression of cartilage attenuation vs sGAG-OD for femora pooled across ages and digestion states (r=−0.88, slope=−1.26, P<0.01, n=30). Osteoarthritis and Cartilage 2010 18, 65-72DOI: (10.1016/j.joca.2009.07.014) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 sGAG distribution through the thickness of normal and digested cartilage from the medial condyles of femora from 4-week old rats. (A) Average EPIC-μCT attenuation vs depth determined from a 2D image slice through the center of the medial condyle (n=5, mean±SD). (B) Average sGAG-OD vs depth for corresponding safranin-O stained images (n=5, mean±SD). Osteoarthritis and Cartilage 2010 18, 65-72DOI: (10.1016/j.joca.2009.07.014) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions