Volume 7, Issue 3, Pages (May 2014)

Slides:



Advertisements
Similar presentations
Multiplexed Spike Coding and Adaptation in the Thalamus
Advertisements

Volume 86, Issue 5, Pages (June 2015)
NMDA Receptor Contributions to Visual Contrast Coding
Volume 22, Issue 16, Pages (August 2012)
Volume 59, Issue 3, Pages (August 2008)
Dense Inhibitory Connectivity in Neocortex
Michael Weick, Jonathan B. Demb  Neuron 
Volume 18, Issue 4, Pages (January 2017)
Volume 84, Issue 4, Pages (November 2014)
Chenguang Zheng, Kevin Wood Bieri, Yi-Tse Hsiao, Laura Lee Colgin 
Volume 56, Issue 6, Pages (December 2007)
Ian M. Finn, Nicholas J. Priebe, David Ferster  Neuron 
Involvement of Mossy Cells in Sharp Wave-Ripple Activity In Vitro
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Spatiotemporal Response Properties of Optic-Flow Processing Neurons
Bassam V. Atallah, Massimo Scanziani  Neuron 
Attenuation of Synaptic Potentials in Dendritic Spines
Temporally Diverse Excitation Generates Direction-Selective Responses in ON- and OFF-Type Retinal Starburst Amacrine Cells  James W. Fransen, Bart G.
Volume 96, Issue 1, Pages e4 (September 2017)
Volume 86, Issue 1, Pages (April 2015)
Threshold Behavior in the Initiation of Hippocampal Population Bursts
Pauses in Cholinergic Interneuron Activity Are Driven by Excitatory Input and Delayed Rectification, with Dopamine Modulation  Yan-Feng Zhang, John N.J.
Volume 96, Issue 4, Pages e5 (November 2017)
Dopaminergic Modulation of Axon Initial Segment Calcium Channels Regulates Action Potential Initiation  Kevin J. Bender, Christopher P. Ford, Laurence.
Volume 16, Issue 4, Pages (July 2016)
Volume 90, Issue 3, Pages (May 2016)
Jason Jacoby, Yongling Zhu, Steven H. DeVries, Gregory W. Schwartz 
Jianing Yu, David Ferster  Neuron 
Nicholas J. Priebe, David Ferster  Neuron 
Volume 16, Issue 6, Pages (August 2016)
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
Cell-Specific Retrograde Signals Mediate Antiparallel Effects of Angiotensin II on Osmoreceptor Afferents to Vasopressin and Oxytocin Neurons  Tevye J.
SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells  Gen Ohtsuki, Claire Piochon, John P. Adelman,
Volume 14, Issue 11, Pages (March 2016)
Amanda H. Lewis, Alisa F. Cui, Malcolm F. McDonald, Jörg Grandl 
Volume 13, Issue 10, Pages (December 2015)
Multiplexed Spike Coding and Adaptation in the Thalamus
Christine Grienberger, Xiaowei Chen, Arthur Konnerth  Neuron 
Multiplexed Spike Coding and Adaptation in the Thalamus
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
Dario Brambilla, David Chapman, Robert Greene  Neuron 
Guilhem Ibos, David J. Freedman  Neuron 
Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking  C. Daniel Meliza, Yang Dan  Neuron  Volume.
Xiaomo Chen, Marc Zirnsak, Tirin Moore  Cell Reports 
Xiangying Meng, Joseph P.Y. Kao, Hey-Kyoung Lee, Patrick O. Kanold 
Endocannabinoids Mediate Neuron-Astrocyte Communication
Distinct Translaminar Glutamatergic Circuits to GABAergic Interneurons in the Neonatal Auditory Cortex  Rongkang Deng, Joseph P.Y. Kao, Patrick O. Kanold 
Daniel E. Winkowski, Eric I. Knudsen  Neuron 
Volume 21, Issue 19, Pages (October 2011)
Translaminar Cortical Membrane Potential Synchrony in Behaving Mice
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
NMDA Receptor Contributions to Visual Contrast Coding
Calcium Release from Stores Inhibits GIRK
Serotonergic Modulation of Sensory Representation in a Central Multisensory Circuit Is Pathway Specific  Zheng-Quan Tang, Laurence O. Trussell  Cell Reports 
Stephanie Rudolph, Linda Overstreet-Wadiche, Jacques I. Wadiche  Neuron 
Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons
Strong G-Protein-Mediated Inhibition of Sodium Channels
Volume 24, Issue 8, Pages e6 (August 2018)
Volume 1, Issue 5, Pages (May 2012)
Bilal Haider, David P.A. Schulz, Michael Häusser, Matteo Carandini 
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
Differential Effects of Excitatory and Inhibitory Plasticity on Synaptically Driven Neuronal Input-Output Functions  Tiago P. Carvalho, Dean V. Buonomano 
Selective modulation of AMPAR-mediated transmission in 4E-BP2−/− mice.
GABA-A Inhibition Shapes the Spatial and Temporal Response Properties of Purkinje Cells in the Macaque Cerebellum  Pablo M. Blazquez, Tatyana A. Yakusheva 
Relationship between spiking and 5K signal in vivo.
Supratim Ray, John H.R. Maunsell  Neuron 
Volume 95, Issue 5, Pages e4 (August 2017)
Multisensory Integration in the Mouse Striatum
Volume 54, Issue 1, Pages (April 2007)
Volume 22, Issue 7, Pages (February 2018)
Presentation transcript:

Volume 7, Issue 3, Pages 697-704 (May 2014) Coreleased Orexin and Glutamate Evoke Nonredundant Spike Outputs and Computations in Histamine Neurons  Cornelia Schöne, John Apergis-Schoute, Takeshi Sakurai, Antoine Adamantidis, Denis Burdakov  Cell Reports  Volume 7, Issue 3, Pages 697-704 (May 2014) DOI: 10.1016/j.celrep.2014.03.055 Copyright © 2014 The Authors Terms and Conditions

Cell Reports 2014 7, 697-704DOI: (10.1016/j.celrep.2014.03.055) Copyright © 2014 The Authors Terms and Conditions

Figure 1 Dissociating OH and Glutamate Actions on HAN Output (A and B) Examples of HAN spiking caused by OHN stimulation (blue bars = 20 Hz stimulation). (A) All three traces are from the same representative cell, showing the effect of OHR block (TCS/SB, n = 11 cells). (B) All three traces are from the same representative cell (different from A), showing the effect of AMPAR block (CNQX, n = 5 cells) and OHR + AMPAR block (CNQX/TCS/SB, n = 5 cells). (C) Rate histograms for (A) and (B). (D) Evoked spikes (action potentials [APs]) versus stimulation frequency. Color-coding as in (C). Data are means ± SEM; cells for 1, 5, 10, and 20 Hz, respectively: control: n = 11, 14, 13, and 13; SB/TCS: n = 9, 12, 12, and 11; CNQX: n = 3, 3, 3, and 4. (E) Temporal profiles of HAN firing responses across OHN stimulation frequencies. No drugs (black), SB/TCS (green), SB/TCS/CNQX (orange). Data are means ± SEM; cells for 1, 5, 10, and 20 Hz, respectively: control: n = 9, 12, 11, and 10; SB/TCS: n = 8, 11, 11, and 10; SB/TCS/CNQX: n = 5, 8, 8, and 7). Cell Reports 2014 7, 697-704DOI: (10.1016/j.celrep.2014.03.055) Copyright © 2014 The Authors Terms and Conditions

Figure 2 Time Courses of HAN Output in Relation to OHN Input (A) Example (top trace, n = 17 cells) and group data (middle graph, means ± SEM) of HAN firing response to 30 s OHN stimulation (throughout the figure, blue bars = 20 Hz stimulation). Bottom: same data compared at specific time points. (B) Same as (A) but on longer timescale to illustrate recovery and individual variations (means in black, individual cells in gray). Statistical comparisons are relative to baseline (arrow A). (C) Relations between cumulative OHN input and HAN output during OH transmission (left graph, measured in CNQX/AP5/PiX) or glutamate transmission (right graph, measured in TCS). OHN input was 20 Hz for 30 s. R and p are linear regression fit parameters. Data are means ± SEM. Cell Reports 2014 7, 697-704DOI: (10.1016/j.celrep.2014.03.055) Copyright © 2014 The Authors Terms and Conditions

Figure 3 HAN Membrane Currents Evoked by OH and Glutamate Inputs from OHN (A) Examples of slowly developing shifts in somatically recorded whole-cell current (at −70 mV) induced by 20 Hz OHN stimulation (blue bars) (n = 6 and 7 cells for control and CNQX groups, respectively). Top four traces are low-pass filtered for visual clarity. Bottom two traces are expansions at points indicated by arrowheads on top left trace. (B) Inward shift in current baseline induced by bath-applied OH (300 nM) and by the optical stimulation (as in A) with and without TCS. Data are means ± SEM. (C) Time course of total excitatory PSCs (inward currents at −70 mV) during 30 s 20 Hz optical stimulation recorded in TCS (significance relative to −15 to −20 s bin, n = 3 cells). Data are means ± SEM. (D) Success rate for converting flashes to glutamate PSC (significance relative to 0–5 s bin) in the same data set as in (C). Data are mean ± SEM. (E) Amplitudes of optically evoked PSCs during 20 Hz 30 s stimulation, recorded in TCS. (F) Average amplitudes of optically evoked PSCs in different time bins (significance relative to 0–5 s bin, and same data set as in E). Data are means ± SEM. Cell Reports 2014 7, 697-704DOI: (10.1016/j.celrep.2014.03.055) Copyright © 2014 The Authors Terms and Conditions

Figure 4 Model for Functional Logic of OH-Glutamate Cotransmission (A) Cartoon of OHN→HAN circuit, overlayed with a theoretical engineering scheme, viewing OHR2s and AMPARs as a control module generating integral-derivative-like signals. (B) A canonical integral feedback loop (simplified from Csete and Doyle, 2002; Aström and Hagglund, 1995). Integration in C compensates for disturbances to output w, allowing w to follow s despite disturbance (Aström and Hagglund, 1995; DiStefano et al., 2012). Hypothetically, to protect arousal signals (w) from instability, C could correspond to OHR2-expressing cells (e.g., HANs) and e could come from OHNs driven by positive inputs s (e.g., sounds; Mileykovskiy et al., 2005) and negative-feedback inputs w (e.g., serotonin, Li et al., 2002). The intermittent, disturbance-associated firing of OHN in vivo (Mileykovskiy et al., 2005) is consistent with this position of OHNs in the feedback loop. Note that integral (but not proportional or derivative) transformation of e by C is necessary and sufficient for accurate and disturbance-resistant tracking of s by w (Aström and Hagglund, 1995). Indeed, when OH or OHR2 is knocked out, OHNs cannot stabilize wakefulness (Chemelli et al., 1999; Lin et al., 1999; Willie et al., 2003). Cell Reports 2014 7, 697-704DOI: (10.1016/j.celrep.2014.03.055) Copyright © 2014 The Authors Terms and Conditions