Y. Tochigi, P. Zhang, M. J. Rudert, T. E. Baer, J. A. Martin, S. L

Slides:



Advertisements
Similar presentations
Y. Tochigi, P. Zhang, M. J. Rudert, T. E. Baer, J. A. Martin, S. L
Advertisements

Arthroscopic airbrush assisted cell implantation for cartilage repair in the knee: a controlled laboratory and human cadaveric study  T.S. de Windt, L.A.
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
L. Ding, E. Heying, N. Nicholson, N. J. Stroud, G. A. Homandberg, J. A
Cutting-edge design to improve cell viability in osteochondral grafts
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis  F. Intema, T.P. Thomas,
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
Glucosamine sulfate reduces experimental osteoarthritis and nociception in rats: association with changes of mitogen-activated protein kinase in chondrocytes 
A. Hennerbichler, M. D. , F. T. Moutos, M. S. , D. Hennerbichler, M. D
The epidemiology and impact of pain in osteoarthritis
Surface ultrastructure and mechanical property of human chondrocyte revealed by atomic force microscopy  C.-H. Hsieh, Ph.D., Y.-H. Lin, Ph.D., S. Lin,
MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers  Garry E. Gold, Deborah Burstein, Bernard Dardzinski, Phillip.
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Acute joint pathology and synovial inflammation is associated with increased intra- articular fracture severity in the mouse knee  J.S. Lewis, W.C. Hembree,
Regional cell density distribution and oxygen consumption rates in porcine TMJ discs: an explant study  J. Kuo, C. Shi, S. Cisewski, L. Zhang, M.J. Kern,
Volume 103, Issue 9, Pages (November 2012)
Angiogenesis in two animal models of osteoarthritis
Synovial changes detected by ultrasound in people with knee osteoarthritis – a meta- analysis of observational studies  A. Sarmanova, M. Hall, J. Moses,
Cyclical articular joint loading leads to cartilage thinning and osteopontin production in a novel in vivo rabbit model of repetitive finger flexion 
Stance-phase aggregate contact stress and contact stress gradient changes resulting from articular surface stepoffs in human cadaveric ankles  Dr. T.O.
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions  L. Wan, B.S., R.J. de Asla, M.D.,
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
D.W. Jackson, M.D., T.M. Simon, Ph.D.  Osteoarthritis and Cartilage 
A clinically realistic large animal model of intra-articular fracture that progresses to post- traumatic osteoarthritis  J.E. Goetz, D. Fredericks, E.
Viability and volume of in situ bovine articular chondrocytes—changes following a single impact and effects of medium osmolarity  Dr Peter G. Bush, Ph.D.,
Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage  Y. Yu, H. Zheng, J.A. Buckwalter, J.A. Martin 
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
A. Hosseini, S. K. Van de Velde, M. Kozanek, T. J. Gill, A. J
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
Diagnostic performance of knee ultrasonography for detecting degenerative changes of articular cartilage  S. Saarakkala, P. Waris, V. Waris, I. Tarkiainen,
Quantitative MR T2 measurement of articular cartilage to assess the treatment effect of intra-articular hyaluronic acid injection on experimental osteoarthritis.
D.R. Rich, A.L. Clark  Osteoarthritis and Cartilage 
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Development of quantitative in vivo imaging of articular cartilage degradation in murine osteoarthritis  P. Das Neves Borges, M.M. Fowkes, P.E. Brennan,
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Spectrocolorimetric evaluation of human articular cartilage
S.I. Paterson, A.K. Amin, A.C. Hall  Osteoarthritis and Cartilage 
Removal of the superficial zone of bovine articular cartilage does not increase its frictional coefficient  R. Krishnan, M. Caligaris, R.L. Mauck, C.T.
Arthroscopic airbrush assisted cell implantation for cartilage repair in the knee: a controlled laboratory and human cadaveric study  T.S. de Windt, L.A.
A novel in vivo murine model of cartilage regeneration
Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads  Y.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Influence of medial meniscectomy on stress distribution of the femoral cartilage in porcine knees: a 3D reconstructed T2 mapping study  T. Shiomi, T.
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical.
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Mechanical injury of bovine cartilage explants induces depth-dependent, transient changes in MAP kinase activity associated with apoptosis  D.H. Rosenzweig,
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
C. Zhou, H. Zheng, J.A. Martin  Osteoarthritis and Cartilage 
A. Sophocleous, A.E. Börjesson, D.M. Salter, S.H. Ralston 
C. Pascual Garrido, A. A. Hakimiyan, L. Rappoport, T. R. Oegema, M. A
Enhanced phagocytic capacity endows chondrogenic progenitor cells with a novel scavenger function within injured cartilage  C. Zhou, H. Zheng, J.A. Buckwalter,
Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression  S.L. Bevill, P.L. Briant, M.E. Levenston,
Presentation transcript:

A novel impaction technique to create experimental articular fractures in large animal joints  Y. Tochigi, P. Zhang, M.J. Rudert, T.E. Baer, J.A. Martin, S.L. Hillis, T.D. Brown  Osteoarthritis and Cartilage  Volume 21, Issue 1, Pages 200-208 (January 2013) DOI: 10.1016/j.joca.2012.10.004 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 (A) Schematic of the tripod bone anchorage system for the “offset” fracture impaction technique. (B) A porcine hock specimen mounted using the anchorage system, in the custom drop-tower system for delivering a fracture impaction force pulse. Osteoarthritis and Cartilage 2013 21, 200-208DOI: (10.1016/j.joca.2012.10.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Chondrocyte viability analysis. (A) Specimen sampling from the fractured distal tibial surface. (B) An osteoarticular sample mounted on the specimen holder. (C) Scanning site selection for the time course analysis. (D) Live/Dead cell counting in the superficial zone (within 100–150 μ of the articular surface), in 0.2-mm intervals in a region neighboring a fracture line. Osteoarthritis and Cartilage 2013 21, 200-208DOI: (10.1016/j.joca.2012.10.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Examples of (A) experimental porcine distal tibial fractures created using the offset impaction technique and (B) “fractures” conventionally simulated by surgical osteotomy. Osteoarthritis and Cartilage 2013 21, 200-208DOI: (10.1016/j.joca.2012.10.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Confocal microscope images of superficial chondrocyte viability in representative regions adjacent to a fracture line (A) or an osteotomy line (B), at 48 h post-insult. Live cells are labeled by green fluorescence, while dead cells are labeled red. Osteoarthritis and Cartilage 2013 21, 200-208DOI: (10.1016/j.joca.2012.10.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Chondrocyte viability in the superficial zone, at 48 h after impaction fracture versus osteotomy, in near-edge regions (typically up to 0.3–0.4 mm away from a fracture/osteotomy line) and in central (control) regions. The scatter plots indicate fractional cell death for each specimen/site combination, from the eight impaction-fractured (Fx) and five osteotomized (Os) specimens. The filled squares/diamonds and dispersion bars indicate (estimated) means calculated in the logistic regression analysis, and 95% confidential intervals, respectively. Osteoarthritis and Cartilage 2013 21, 200-208DOI: (10.1016/j.joca.2012.10.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Time course changes of fractional cell death in the superficial zone, in the 6–12- and 24–48-h datasets. The filled squares indicate the means of fractional cell death in seven 0.2 mm-wide zones in near-edge regions, while the filled diamonds are for those in central regions, both across nine observation sites in three joints The dispersion bars indicate 95% confidential intervals. Near-edge fractional death values for each specimen/site combination (the means across seven 0.2 mm-wide zones) are also individually plotted. Osteoarthritis and Cartilage 2013 21, 200-208DOI: (10.1016/j.joca.2012.10.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Spatial distribution of fractional cell death in the superficial zone, at 12 or 48 h post-fracture. The filled squares and dispersion bars indicate the mean values and 95% confidential intervals of fractional cell death measured separately for seven 0.2 mm-wide zones. Data from each specimen/site combination are also individually plotted. The red solid lines indicate the upper limit of normative range (mean plus two standard deviations) of fractional death in central regions, at each observation time. Osteoarthritis and Cartilage 2013 21, 200-208DOI: (10.1016/j.joca.2012.10.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 8 (A) Schematic diagram of the pendulum impact device for delivering an impaction force pulse in survival animal surgeries. (B) Lateral radiographs of porcine hock experimental fractures created in vivo, using the offset impaction technique, in a pilot series (n = 4) of an ongoing survival study. Osteoarthritis and Cartilage 2013 21, 200-208DOI: (10.1016/j.joca.2012.10.004) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions