Volume 87, Issue 5, Pages (September 2015)

Slides:



Advertisements
Similar presentations
Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey  Farran Briggs, Caitlin W.
Advertisements

Volume 92, Issue 1, Pages (October 2016)
How Variable Clones Build an Invariant Retina
Christian Mayer, Rachel C. Bandler, Gord Fishell  Neuron 
Volume 29, Issue 3, Pages (September 2008)
A New Chapter in the Life of Cajal’s Short-Axon Neurons: Separation of Interneuron Siblings after Birth  Cristina Gil-Sanz, Ulrich Müller  Neuron  Volume.
Volume 86, Issue 4, Pages (May 2015)
Volume 87, Issue 5, Pages (September 2015)
The TRIM-NHL Protein TRIM32 Activates MicroRNAs and Prevents Self-Renewal in Mouse Neural Progenitors  Jens C. Schwamborn, Eugene Berezikov, Juergen A.
Origin and function of olfactory bulb interneuron diversity
Volume 10, Issue 1, Pages (January 2012)
Mosaic Analysis with Double Markers in Mice
Antonio Jesús Hinojosa, Rubén Deogracias, Beatriz Rico  Cell Reports 
Volume 29, Issue 1, Pages (April 2014)
Volume 79, Issue 6, Pages (September 2013)
Asymmetric Inheritance of Radial Glial Fibers by Cortical Neurons
Volume 26, Issue 5, Pages (September 2013)
Euiseok J. Kim, Matthew W. Jacobs, Tony Ito-Cole, Edward M. Callaway 
Volume 89, Issue 5, Pages (March 2016)
James G. Heys, Krsna V. Rangarajan, Daniel A. Dombeck  Neuron 
Volume 6, Issue 3, Pages (March 2010)
Volume 89, Issue 5, Pages (March 2016)
Timing of CNS Cell Generation
Masato Yano, Yoshika Hayakawa-Yano, Aldo Mele, Robert B. Darnell 
Jonathan J. Nassi, David C. Lyon, Edward M. Callaway  Neuron 
Lineage Tracing Using Cux2-Cre and Cux2-CreERT2 Mice
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
Volume 2, Issue 3, Pages (March 2014)
Volume 88, Issue 3, Pages (November 2015)
Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals  Marie-Claude Bélanger, Benoit Robert,
Volume 67, Issue 2, Pages (July 2010)
Volume 13, Issue 6, Pages (November 2015)
Volume 74, Issue 2, Pages (April 2012)
Abdul Q. Sheikh, Janet K. Lighthouse, Daniel M. Greif  Cell Reports 
Response Diversity and the Timing of Progenitor Cell Maturation Are Regulated by Developmental Changes in EGFR Expression in the Cortex  Robert C Burrows,
G Protein βγ Subunits and AGS3 Control Spindle Orientation and Asymmetric Cell Fate of Cerebral Cortical Progenitors  Kamon Sanada, Li-Huei Tsai  Cell 
Fgf10 Regulates Transition Period of Cortical Stem Cell Differentiation to Radial Glia Controlling Generation of Neurons and Basal Progenitors  Setsuko.
Volume 22, Issue 5, Pages (May 2012)
Volume 60, Issue 4, Pages (November 2008)
Volume 5, Issue 4, Pages (October 2015)
Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey  Farran Briggs, Caitlin W.
Volume 10, Issue 4, Pages (April 2018)
Volume 89, Issue 5, Pages (March 2016)
Volume 59, Issue 5, Pages (September 2008)
Atypical PKC and Notch Inhibition Differentially Modulate Cortical Interneuron Subclass Fate from Embryonic Stem Cells  David J. Tischfield, Junho Kim,
Ryan G. Natan, Winnie Rao, Maria N. Geffen  Cell Reports 
Volume 86, Issue 4, Pages (May 2015)
Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition
Volume 2, Issue 2, Pages (February 2014)
Christian Mayer, Rachel C. Bandler, Gord Fishell  Neuron 
Distinct Apical and Basolateral Mechanisms Drive Planar Cell Polarity-Dependent Convergent Extension of the Mouse Neural Plate  Margot Williams, Weiwei.
Ashkan Javaherian, Hollis T. Cline  Neuron 
Xuepei Lei, Jianwei Jiao  Stem Cell Reports 
Giulia Quattrocolo, Gord Fishell, Timothy J. Petros  Cell Reports 
The Temporal Sequence of the Mammalian Neocortical Neurogenetic Program Drives Mediolateral Pattern in the Chick Pallium  Ikuo K. Suzuki, Takahiko Kawasaki,
Tilak Das, Bernhard Payer, Michel Cayouette, William A. Harris  Neuron 
David P. Doupé, Allon M. Klein, Benjamin D. Simons, Philip H. Jones 
James H. Marshel, Takuma Mori, Kristina J. Nielsen, Edward M. Callaway 
Volume 22, Issue 4, Pages (April 2012)
Volume 93, Issue 3, Pages e5 (February 2017)
Marta Nieto, Carol Schuurmans, Olivier Britz, François Guillemot 
Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia  Zhiqiang Dong, Nan Yang, Sang-Yeob.
SeqFISH Accurately Detects Transcripts in Single Cells and Reveals Robust Spatial Organization in the Hippocampus  Sheel Shah, Eric Lubeck, Wen Zhou,
Volume 80, Issue 5, Pages (December 2013)
Volume 9, Issue 6, Pages (December 2014)
Giulia Quattrocolo, Gord Fishell, Timothy J. Petros  Cell Reports 
Marta Nieto, Carol Schuurmans, Olivier Britz, François Guillemot 
Volume 93, Issue 4, Pages e3 (February 2017)
Volume 9, Issue 6, Pages (December 2014)
Volume 11, Issue 4, Pages (October 2012)
Presentation transcript:

Volume 87, Issue 5, Pages 999-1007 (September 2015) Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons  Corey C. Harwell, Luis C. Fuentealba, Adrian Gonzalez-Cerrillo, Phillip R.L. Parker, Caitlyn C. Gertz, Emanuele Mazzola, Miguel Turrero Garcia, Arturo Alvarez-Buylla, Constance L. Cepko, Arnold R. Kriegstein  Neuron  Volume 87, Issue 5, Pages 999-1007 (September 2015) DOI: 10.1016/j.neuron.2015.07.030 Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 1 MGE Progenitors Are Arranged in Radial Arrays of Clonally Related Cells (A) 24 hr after injection we observed a single RG cell and its progeny. Both the RG cell and progeny were positive for the proliferative cell marker Ki67. (B) Radial arrays of cells in the mouse MGE approximately 90 hr after injection with a GFP-expressing retrovirus. Neurons are also observed migrating tangentially away from the clone (arrowheads). (C) Higher magnification view of the clone identifies eight anatomically associated cells, one being a RG cell with an apical endfoot (arrowhead) attached to the ventricular surface. (D) Time-lapse imaging of a RG cell in the MGE shows an asymmetrical RG cell division at the ventricular surface that produces an IPC, and also a previously generated IPC dividing in the SVZ. (E) Retroviral GFP-labeled MGE progenitors 48 hr after viral infection. Non-RG progeny express bHLH transcription factors Mash1 (blue) and Olig2 (red) n = 134. (F) Time-lapse imaging of an E13.5 embryonic mouse organotypic slice shows a GFP+ IPC dividing to produce a pair of neuronal progeny. Scale bars: (A) 15 μm, (B) 300 μm, (D) 25 μm, and ([E] and [F]) 20 μm. Neuron 2015 87, 999-1007DOI: (10.1016/j.neuron.2015.07.030) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 2 Clustering of Sparsely Labeled MGE Progenitors (A) E12.5 Nkx2.1-Cre;LSL-Tva mouse embryo showing the TVA+ region of the MGE progenitor zone where RCAS viral infection is permitted, in green. (B–C′) P28 brain sections containing RCAS-GFP virus-labeled clones stained with PV (white) ([B] and [B′]) or SOM (red) ([C] and [C′]). (D) Pie chart showing the percentage of cells positive for PV, SOM, or negative for both markers (Neither) from Nkx2.1-Cre;LSL-Tva-injected brains (n = 4 brains, 701 cells). (E) Coronal section of P28 mouse brain injected with RCAS-EGFP virus at E12.5. Sparse EGFP+ neurons appear to cluster together into groups of two or more cells in the cortex. (F) RCAS-EGFP-labeled neurons, derived from infections of progenitors in the developing cortex with a BrdU pulse given 24 hr after infection (red), showing that EGFP+ neighboring cells often share the same BrdU labeling status. The upper box shows a pair of BrdU− migratory neurons (upper magnified panel F′), whereas the lower box shows a pair of BrdU+ migratory neurons (F″). (G) E12.5 Nkx2.1-Cre;LSL-Tva mouse embryos injected with a mixture of RCAS-GFP and RCAS-mCherry viruses and harvested at P28. (H) Coronal section of mouse injected with mixed virus showing clusters of red, green, and yellow cells. (I) Cumulative proportion of nearest neighbor distribution (NND) of same (black) and different (red) fluorophores (n = 3 brains, 215 cells, p < 0.01, Kolmogorov-Smirnov). Scale bars: (B) 50 μm and (G) 100 μm. Neuron 2015 87, 999-1007DOI: (10.1016/j.neuron.2015.07.030) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 3 Lineage Analysis of Nkx2.1+ Progenitors Using Barcode Retroviral Library (A) Schematic of the QmGFP-OL murine retroviral library. Each retrovirus expresses membrane GFP and contains a 24-bp barcode sequence. (B) EnvA pseudotyped retrovirus libraries were intraventricularly delivered into Nkx2.1-Cre;LSL-Tva embryos at E12.5; brains were harvested and analyzed at P28. (C) Stained neuron outlined for laser capture microdissection and catapulting. (D) Example gel of nested PCR products of dissected cells and GFP-negative tissue sections used as controls. (E) Example barcode sequence alignment showing two four-cell clones with matching barcodes. (F) 3D map of two four-cell clones shown in red and blue. Green spheres show cells which did not return a barcode sequence. Neuron 2015 87, 999-1007DOI: (10.1016/j.neuron.2015.07.030) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 4 Interneuron Clones Consist of Widely Dispersed Cells of Diverse Subtypes (A) Representative schematic of a four-cell clone containing three PV cells (white) and one SOM cell (red) dispersed across thousands of microns in the brain. (B) Pie chart of forebrain regions that contain neurons that returned a barcode in Nkx2.1-Cre;LSL-Tva virus-injected mice (n = 302 cells). (C) Bar graph showing the proportion of multi-cell clones composed of at least one cell type. S: somatostatin, P: parvalbumin, and N: negative for both markers (n = 84 cells, 26 clones). (D) Box plot representing all of the NNDs between pairs of cells in each clone. The marks in the boxes are the 1st, 2nd (median), and 3rd quartile of the distances, with the dots representing the outliers. Superimposed red lines represent the mean distances in each group, and black bars represent the median distances (n = 2 brain hemispheres, 284 cells). (E) Cumulative (NND) of Nkx2.1-Cre;LSL-Tva brains (n = 284), 500. The grey band shown in the plot is the 95% confidence band based on 500 simulated occurrences of complete spatial random events. (F) Box plot representing NND of cortical interneurons. Sibling clones are significantly more widely distributed than unrelated cortical neurons, and all neurons (both with and without tags) (multi- versus single p < 0.01; multi versus all p < 0.001, Kruskal-Wallis test) Scale bar: 50 μm. Neuron 2015 87, 999-1007DOI: (10.1016/j.neuron.2015.07.030) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 5 Wide Dispersion and Diversity of Clonally Related Interneurons Left: Coronal section of embryonic (E12.5) mouse brain illustrating distinct clonal lineages of MGE progenitors (red and green). Radial glia must divide asymmetrically to produce intermediate progenitors cells, which divide symmetrically to produce pairs of newborn interneurons. The newborn neurons must then migrate tangentially to reach their final destinations in the forebrain. Right: Postnatal day (P28) mouse brain illustrating clones composed of SOM and PV subtypes dispersed widely across different functional and structural regions of the cortex, striatum (not shown) and hippocampus. Neuron 2015 87, 999-1007DOI: (10.1016/j.neuron.2015.07.030) Copyright © 2015 Elsevier Inc. Terms and Conditions