K. Nagasawa1), O. Mentré2), S. Daviero-Minaud2),

Slides:



Advertisements
Similar presentations
Outline Curriculum (5 lectures) Each lecture  45 minutes
Advertisements

Warsaw University of Technology
Reactive HVOF Spraying TiN-matrix Composite Coating and its Corrosion and Wear Resistance Properties Jing Ma Hebei University of Science and Technology.
Schematic of Rechargable Li Battery
Improving the electrolyte/ cathode assembly for advanced Solid Oxide Fuel Cells N. Hildenbrand, B.A. Boukamp, D.H.A. Blank (a) P. Nammensma, G. Rietveld.
Ionic ceramic conductors. Solid Oxide Fuell Cells (SOFCs)
We demonstrate the applicability of LAMOX oxide ion conductor as the electrolyte of single-chamber SOFC, using two compositions La 0.9 Dy 0.1 Mo 2 O 9.
Solid Oxide Fuel Cells Rodger McKain, PhD.
CH5715 Energy Conversion and Storage energy-conversion-and-storage-john-irvine/
Prabhu Ganesan, Hector Colon, Bala Haran, R. E. White and Branko Popov Department of Chemical Engineering University of South Carolina, Columbia, South.
2 Section.
MENA 3200 Energy Materials Materials for Electrochemical Energy Conversion Part 3 Materials for SOFCs and PEMFCs Truls Norby.
3rd review meeting New Generation Thermal Barrier Coating A. Bhattacharya V. Shklover W. Steurer.
WP 1: Fuel Cell Development 1 Strictly Confidential NMW Workpackage 1: Fuel Cell Development KTI Review Meeting,
Department of Chemical Engineering University of South Carolina by Hansung Kim and Branko N. Popov Department of Chemical Engineering Center for Electrochemical.
Sol Gel Approach: Lanthanum Silicates as a Replacement for Yttria Stabilized Zirconia (YSZ) in Solid Oxide Fuel Cell (SOFC) Electrolytes Aminah Rumjahn.
M a t e r i a l s Swiss Federal Institute of Technology Zürich Nonmetallic Materials Brandon E. Bürgler Nonmetallic Inorganic Materials ETH Zürich Single.
Nanocrystalline Super-Ionic Conductors for Solid Oxide Fuel Cells Daniel Strickland (Seattle University) University of California – Irvine Material Science.
Rajalekshmi Chockalingam, Vasantha R.W. Amarakoon, and Herbert Giesche New York State College of Ceramics at Alfred University, Alfred, NY, USA Alumina.
Hector Colon, Prabhu Ganesan, Bala Haran, R. E. White and Branko Popov Department of Chemical Engineering University of South Carolina, Columbia, South.
Investigation of BSCF Cathode on GDC Electrolyte for Intermediate Temperature SOFCs Vann Brasher Mentors: Dr. Daniel Mumm Anh Duong Sungrok Bang.
Bradley Allison Advisor: Prof. Rodney Trice Effects of Starting Powder Size on Sintering of YSZ Thermal Barrier Coatings REU Presentation August 5, 2004.
Nanoscale Electrode Development for Fundamental Studies of Mixed Ionic and Electronic Conductors as High Temperature Fuel Cell Components Jeevitha Evanjeline.
Solid State Approach: La 9.33 Si 6 O 26 Electrolyte as a Replacement for YSZ in Solid Oxide Fuel Cells By: Scott Wilhour, Penn State, MatSE Mentor: Martha.
Prabhu Ganesan, Hector Colon, Bala Haran, R. E. White and Branko Popov Department of Chemical Engineering University of South Carolina, Columbia, SC
PREPARATION OF ZnO NANOWIRES BY ELECTROCHEMICAL DEPOSITION
Integrated Micropower Generator
A study of Fe – substituted (La 0.8 Sr 0.2 ) 0.95 MnO 3-y as cathode material for solid oxide fuel cells B. N. Wani, Mrinal Pai, S.J. Patwe, S. Varma,
| PAGE 1 CEA | 10 AVRIL 2012 URANIUM (III) AND PLUTONIUM (III) PRECIPITATION IN MOLTEN CHLORIDE Pu Futures July 2012 J.F. Vigier 1,2, A. Laplace.
SOLID OXIDE FUEL CELL BASED ON PROTON- CONDUCTING CERAMIC ELECTROLYTE* U. (Balu) Balachandran, T. H. Lee, and S. E. Dorris Argonne National Laboratory.
Integrated Micropower Generator Sossina M. Haile, Zongping Shao, Chan Kwak, Peter Babilo California Institute of Technology, Materials Science Micro- SOFC.
Salt Power Chloe Shreve and Helen Row.  It uses an electrochemical cell. In the cell there are anodes, cathodes and electrolytes that concert chemical.
* 논 문 세 미 나 * Some effects of different additives on dielectric and piezoelectric properties of (Bi½Na½)TiO 3 - BaTiO 3 morphotropic-phase-boundary composition.
Investigation of electrode materials with 3DOM structures Antony Han Chem 750/7530.
Integrated Micropower Generator Sossina Haile, David Goodwin, Caltech Steve Visco, Lutgard de Jonghe, Craig Jacobson, LBNL Scott Barnett, Northwestern.
Fabrication of Dual Layer Ni/Ni-YSZ Hollow Fibers for Anode Support via Phase Inversion and Sintering Method Krzysztof Kanawka, Nicolas Droushiotis, Zhentao.
Develop (K 0.5 Na 0.5 )NbO 3 Lead-Free Ferroelectric Thin Films by the RF Sputtering Technique Hsiu-Hsien Su.
La 0.8 Sr 0.2 FeO 3 CATHODE CERAMICS OF SOLID OXIDE FUEL CELLS PREPARED USING REACTION-SINTERING PROCESS Yi-Cheng Liou*, Yuh-Lin Huang Department of Electronics.
Einar Vøllestad, Ragnar Strandbakke and Truls Norby U 4H+ 2H2 O2 2H2O
Processing & Testing Electroceramics EBB 443-Technical Ceramics Dr. Julie Juliewatty Mohamed School of Materials and Mineral Resources Engineering Universiti.
Solid Oxide Fuel Cell Based on Proton Conducting Ceramic Electrolyte* U. (Balu) Balachandran, T. H. Lee, L. Chen, B. Ma, and S. E. Dorris Energy Systems.
Shiqiang Zhuang*, Bharath Babu Nunna*, Eon Soo Lee (PI)
Production of NTCR Thermistor Devices based on NiMn2O4+d
Study on Double Perovskite as a Solid Oxide Regenerative Fuel Cell Cathode Material YoungJin Kwon† and Joongmyeon Bae (Dept. of Mechanical Engineering,
  C.A. Strydom 1, T.Z. Sehume1, J.R. Bunt 1,2 and J.C. van Dyk2
Effects of sintering temperature on the physical and
Relationship between microstructure and experimental conditions
Impedancemetric NOx Sensors Based On La0.8Sr0.2MnO3 and Au Electrodes
Integrated Micropower Generator
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
APTES-BNNs / Epoxy Composites
Universidad Complutense de Madrid, Departamento Física Aplicada III, GFMC Rainer Schmidt Microstructure and dielectric properties of CaCu3Ti4O12 (CCTO)
Thermal Stability of LiCoO2 and Garnet Solid Electrolyte Li7La3Zr2O12
High temperature steam electrolysis (HTSE) for hydrogen production:
The Role of Catalysis in Next Generation Direct Hydrocarbon Solid Oxide Fuel Cell Anodes Steven McIntosh, Department of Chemical Engineering, University.
The Role of Catalysis in Next Generation Direct Hydrocarbon Solid Oxide Fuel Cell Anodes Steven McIntosh, Department of Chemical Engineering, University.
The Electrochemical and Thermal Performances of Ca3Co4O9-δ as a cathode material for IT-SOFCs UCCS K. Nagasawaa, O. Mentreb, S. Daviero-Minaudb, N. Preuxb,
Crystal structure, electric and magnetic properties in NaxCoO2
Yokohama National University H.Nakatsugawa, H.M.Jeong and K.Nagasawa
H.Nakatsugawa1), K.Nagasawa1) and Y.Okamoto2)
Crystal structure, electric and magnetic properties in NaxCoO2
H.Nakatsugawa1), K.Nagasawa1) and Y.Okamoto2)
K.Nagasawa1), H.Nakatsugawa1) and Y.Okamoto2)
Silicon Carbide- Boron Carbide Composites
Themoelectric properties of Pb and Sr doped Ca3Co4O9
Photoluminescence of stabilized ZrO2 with different dopant
Principles Student Powerpoint – Hydrogen Technologies
Superlattices of Perovskite Structured Materials for Solid Oxide Fuel Cells Yayoi Takamura, Department of Chemical Engineering and Materials Science, UC.
B. RISCOB et al., Institute for Plasma Research
Presentation transcript:

The Electrochemical and thermal performances of Ca3Co4O9-δ as a cathode material for IT-SOFCs K. Nagasawa1), O. Mentré2), S. Daviero-Minaud2), N. Preux2), A. Rolle2) and H. Nakatsugawa1) 1) Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Word, Yokohama, Kanagawa, 240-8501, Japan 2) UCCS - Unite de Catalyse et de Chimie du Solide – UMR CNRS 8181, Ecole Nationale Superieure de Chimie de Lille, Batiment C7a – BP.90, 108, 59652, Villeneuve d'Ascq cedex, France GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009 Outline Background Disposition for Ca3Co4O9-δ Cell Manufacturing Thermal Dilatometory Chemical Compatibility Electrode Deposition Preliminary Electrochemical Tests Conclusions GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009 Back ground Cobalt Oxide in Cathode materials for IT-SOFC 3D Perovskite 2D Perovskite Sm0.5Sr0.5CoO3 La1-xSrxCoO3 Ba0.5Sr0.5Co1-xFexO3    ・ YBaCo4O7 GdBaCo2O5 showing promising cathode performances.  mechanical incompatibility with electrolyte in TEC  chemical incompatibility reactivity with zirconia ( IT) GDR ITSOFC-PACTE Tours 8-10 juin 2009

Crystal structure and oxygen vacancy in Ca3Co4O9-δ 2D misfit layered structure X2/m(0 p 0)s0 CoO2 Hexagonal layer High electrical conduction layer Co valence 3+/4+ Cf. NaxCoO2-yH2O  Ca3Co4O9 σ > 100 S/cm Ca2CoO3 Rock salt layer Co valence 2+/ 3+ Oxygen Vacancy δ ~ 0 – 0.15 Possible ionic conduction O [Ca2CoO3]pCoO2 GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009 Thermal dilatometry Temperature (ºC) . ΔL/L0 (-) Thermal expansion coefficient (10-6 ºC-1) CGO → TEC = 11-12 x 10-6 (ºC-1) Experimental Value Ca3Co4O9 → TEC = 9-10 x 10-6 (ºC-1) 30CGO-Ca3Co4O9 → TEC = 10-11 x 10-6 (ºC-1) Caliculated Theoretical Value from HT-XRD → TEC = 13 x 10-6 (ºC-1) GDR ITSOFC-PACTE Tours 8-10 juin 2009

Optimizing grain size by ball milling times initial condition (0 hour) 9 hours 12 hours 24 hours Mean grain size 0~12 h →1.5-4 m 24 h → 0.5-1 m GDR ITSOFC-PACTE Tours 8-10 juin 2009

Reaction test with electrolyte YSZ(a) 750℃ 100 hours Ca3Co4O9 + or CGO(b) YSZ CGO GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009 Experimental Test Cell preparation CaCO3 Ball milling Calcination 880℃ 12h Sintering 880℃ 24h + 30 wt% CGO Ball milling Co3O4 + dispersant + acetone Deposit CGO pellet Heat treating 700℃ ink Drying in air + binder + acetone <Cell size> 10-11 mm in diameter 1.5-2 mm thick ・XRD ・Thermal dilatometry ・SEM ・Impedance measurement GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009 SEM image Cross section of the cell Cell surface <Ca3Co4O9-δ electrode cell> 50.0 μm resin Ca3Co4O9 CGO 20.0 μm resin 70%Ca3Co4O9-30%CGO CGO GDR ITSOFC-PACTE Tours 8-10 juin 2009

Impedance spectra of Ca3Co4O9-δ -1 1 2 6 [ in air ] [ at 700 ºC ] <HF> <LF> [ 700 ºC in air ] ASR = 4.00 Ω.cm2 GDR ITSOFC-PACTE Tours 8-10 juin 2009

Impedance spectra of 30CGO-Ca3Co4O9-δ -1 1 2 6 [ in air ] [ at 700 ºC ] <HF> <LF> [ 760 ºC in air ] ASR = 1.05 Ω.cm2 [ 700 ºC in air ] ASR = 1.42 Ω.cm2 GDR ITSOFC-PACTE Tours 8-10 juin 2009

Activation energy →Improve low activation energy by added 30% CGO GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009 Conclusions Good chemical compatibility with CGO (TEC, Chemical reactivity). Good adherence between electrode and electrolyte, no crack surface. Relatively Low ASR value of Ca3Co4O9 and 30CGO-Ca3Co4O9 cell. the limiting stage is the ionic conductivity for Ca3Co4O9  Necessity for optimization of the microstructure. (grain size optimization, use of cellulose for porosity)  Optimization of the Oxygen conductivity (doping, … measurement of the permittivity under investigation (SPS- Toulouse, France) GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009

GDR ITSOFC-PACTE Tours 8-10 juin 2009