Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams

Slides:



Advertisements
Similar presentations
6.1 Transistor Operation 6.2 The Junction FET
Advertisements

Spring 2007EE130 Lecture 29, Slide 1 Lecture #29 ANNOUNCEMENTS Reminder: Quiz #4 on Wednesday 4/4 No Office Hour or Coffee Hour on Wednesday Tsu-Jae will.
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
Lecture 19 OUTLINE The MOSFET: Structure and operation
Lecture 1b - Review Kishore C Acharya. 2 Building Semiconductor Devices To build semiconductor devices # of carriers present in the semiconductor must.
Grace Xing---EE30357 (Semiconductors II: Devices) 1 EE 30357: Semiconductors II: Devices Lecture Note #19 (02/27/09) MOS Field Effect Transistors Grace.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
NMOS PMOS. K-Map of NAND gate CMOS Realization of NAND gate.
ECE 4339 L. Trombetta ECE 4339: Physical Principles of Solid State Devices Len Trombetta Summer 2007 Chapters 16-17: MOS Introduction and MOSFET Basics.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
EE130/230A Discussion 10 Peng Zheng.
MOS Transistor Theory The MOS transistor is a majority carrier device having the current in the conducting channel being controlled by the voltage applied.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 1.
L ECE 4243/6243 Fall 2016 UConn F. Jain Notes Chapter L11 (page ). FET Operation slides Scaling Laws of FETs (slides 9-22)
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Lecture 2 OUTLINE Important quantities
Revision CHAPTER 6.
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Lecture 22 OUTLINE The MOSFET (cont’d) MOSFET scaling
Intro to Semiconductors and p-n junction devices
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Lecture 7 OUTLINE Poisson’s equation Work function
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 19 OUTLINE The MOSFET: Structure and operation
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
MOS Capacitor Basics Metal SiO2
Long Channel MOS Transistors
EE130/230A Discussion 5 Peng Zheng.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
EE130/230A Discussion 8 Peng Zheng.
Sung June Kim Chapter 16. MOS FUNDAMENTALS Sung June Kim
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 7 OUTLINE Work Function Metal-Semiconductor Contacts
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 22 OUTLINE The MOSFET (cont’d) MOSFET scaling
6.1 Transistor Operation 6.2 The Junction FET
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture 20 OUTLINE The MOSFET (cont’d)
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d)
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Sung June Kim Chapter 18. NONIDEAL MOS Sung June Kim
MOS Capacitors Dr. David W. Graham West Virginia University
Semiconductor Device Modeling & Characterization Lecture 20
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
VFB = 1/q (G- S).
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
VFB = 1/q (G- S).
Presentation transcript:

Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams Reading: Pierret 16.1-16.2, 18.1; Hu 5.1

MOS Capacitor Structure (cross-sectional view) Most MOS devices today employ: degenerately doped polycrystalline Si (“poly-Si”) as the “metallic” gate-electrode material n+-type for “n-channel” transistors p+-type, for “p-channel” transistors SiO2 as the gate dielectric band gap = 9 eV er,SiO2 = 3.9 Si as the semiconductor material p-type, for “n-channel” transistors n-type, for “p-channel” transistors GATE xo Semiconductor + VG _ EE130/230A Fall 2013 Lecture 15, Slide 2

Bulk Semiconductor Potential, fF p-type Si: n-type Si: Ec Ei qfF EF Ev Ec EF |qfF| Ei Ev EE130/230A Fall 2013 Lecture 15, Slide 3

Special Case: Equal Work Functions FM = FS R. F. Pierret, Semiconductor Device Fundamentals, Fig. 16.2 EE130/230A Fall 2013 Lecture 15, Slide 4

General Case: Different Work Functions R. F. Pierret, Semiconductor Device Fundamentals, Fig. 18.1 E0 E0 E0 E0 EE130/230A Fall 2013 Lecture 15, Slide 5

MOS Band Diagrams: Guidelines Fermi level EF is flat (constant with x) within the semiconductor Since no current flows in the x direction, we can assume that equilibrium conditions prevail Band bending is linear within the oxide No charge in the oxide => dE/dx = 0 so E is constant => dEc/dx is constant From Gauss’ Law, we know that the electric field strength in the Si at the surface, ESi, is related to the electric field strength in the oxide, Eox: E E E EE130/230A Fall 2013 Lecture 15, Slide 6

MOS Band Diagram Guidelines (cont’d) The barrier height for conduction-band electron flow from the Si into SiO2 is 3.1 eV This is equal to the electron-affinity difference (cSi and cSiO2) The barrier height for valence-band hole flow from the Si into SiO2 is 4.8 eV The vertical distance between the Fermi level in the metal, EFM, and the Fermi level in the Si, EFS, is equal to the applied gate voltage (assuming that the Si bulk is grounded): EE130/230A Fall 2013 Lecture 15, Slide 7

MOS Equilibrium Band Diagram metal oxide semiconductor n+ poly-Si SiO2 EC p-type Si EC=EFM EFS EV EV EE130/230A Fall 2013 Lecture 15, Slide 8

Flat-Band Condition The flat-band voltage, VFB, is the applied voltage which results in no band-bending within the semiconductor. Ideally, this is equal to the work-function difference between the gate and the bulk of the semiconductor: qVFB = FM  FS EE130/230A Fall 2013 Lecture 15, Slide 9

Voltage Drops in the MOS System In general, where qVFB = FMS = FM – FS Vox is the voltage dropped across the oxide (Vox = total amount of band bending in the oxide) fs is the voltage dropped in the silicon (total amount of band bending in the silicon) For example: When VG = VFB, Vox = fs = 0, i.e. there is no band bending EE130/230A Fall 2013 Lecture 15, Slide 10

MOS Operating Regions (n-type Si) Decrease VG toward more negative values  the gate electron energy increases relative to that in the Si decrease VG decrease VG Accumulation VG > VFB Electrons accumulated at Si surface Depletion VG < VFB Electrons depleted from Si surface Inversion VG < VT Surface inverted to p-type EE130/230A Fall 2013 Lecture 15, Slide 11 R. F. Pierret, Semiconductor Device Fundamentals, Fig. 16.5

MOS Operating Regions (p-type Si) increase VG increase VG VG = VFB VG < VFB VT > VG > VFB EE130/230A Fall 2013 Lecture 15, Slide 12 R. F. Pierret, Semiconductor Device Fundamentals, Fig. 16.6