Objectives Apply inequalities in one triangle..

Slides:



Advertisements
Similar presentations
Section 5-5 Inequalities for One Triangle
Advertisements

The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.
5-5 Indirect Proof and Inequalities in One Triangle Warm Up
Apply inequalities in one triangle. Objectives. Triangle inequality theorem Vocabulary.
GEOMETRY 4-6 Triangle Inequalities Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Objectives Apply inequalities in one triangle..
The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.
Geometry 5-5 Inequalities in Triangles Within a triangle: – the biggest side is opposite the biggest angle. – the smallest side is opposite the smallest.
Inequalities in One Triangle
Triangle Inequality Theorem:
Warm-up: Find the missing side lengths and angle measures This triangle is an equilateral triangle 10 feet 25 feet This triangle is an isosceles triangle.
TODAY IN GEOMETRY…  Learning Target: 5.5 You will find possible lengths for a triangle  Independent Practice  ALL HW due Today!
Triangle Inequality Theorems Sec 5.5 Goals: To determine the longest side and the largest angle of a triangle To use triangle inequality theorems.
5-5 Indirect Proof and Inequalities in One Triangle Warm Up
Objectives Write indirect proofs. Apply inequalities in one triangle.
Triangle Inequality Theorem.  The sum of the two shorter sides of any triangle must be greater than the third side. Example: > 7 8 > 7 Yes!
Lesson 3-3: Triangle Inequalities 1 Lesson 3-3 Triangle Inequalities.
6.4 Triangle Inequalities. Angle and Side Inequalities  Sketch a good size triangle in your notebook (about a third of the page).  Using a ruler find.
Holt Geometry 5-5 Indirect Proof and Inequalities in One Triangle 5-5 Indirect Proof and Inequalities in One Triangle Holt Geometry Warm Up Warm Up Lesson.
Holt Geometry 5-5 Inequalities in One Triangle 5-5 Inequalities in One Triangle Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
4.7 Triangle Inequalities. Theorem 4.10 If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than.
Lesson 5.4 The Triangle Inequality. Triangle Inequality Theorem The sum of the lengths of any two sides of a triangle is greater than the length of the.
4.7 Triangle Inequalities. In any triangle…  The LARGEST SIDE lies opposite the LARGEST ANGLE.  The SMALLEST SIDE lies opposite the SMALLEST ANGLE.
Inequalities and Triangles
1 Triangle Inequalities. 2 Triangle Inequality The smallest side is across from the smallest angle. The largest angle is across from the largest side.
Holt McDougal Geometry 5-4 The Triangle Midsegment Theorem Warm Up Use the points A(2, 2), B(12, 2) and C(4, 8) for Exercises 1–5. 1. Find X and Y, the.
LESSON 5-5 INEQUALITIES IN TRIANGLES OBJECTIVE: To use inequalities involving angles and sides of triangles.
Geometry Section 5.5 Use Inequalities in a Triangle.
Triangle Inequality Theorem and Side Angle Relationship in Triangle
4.7 Triangle Inequalities
5.4 The Triangle Inequality What you’ll learn: 1.To apply the triangle inequality Theorem 2.To determine the shortest distance between a point and a line.
5.5 Inequalities in Triangles Learning Target I can use inequalities involving angles and sides in triangles.
Lesson 5.5 Use Inequalities in a Triangle. Theorem 5.10 A B C 8 5 IF AB > BC, THEN C > A The angle opposite the longest side is the largest angle; pattern.
5-5 Inequalities in One Triangle Warm Up Lesson Presentation
Holt Geometry 5-5 Indirect Proof and Inequalities in One Triangle 5-5 Indirect Proof and Inequalities in One Triangle Holt Geometry.
Date: 7.5 Notes: The Δ Inequality Lesson Objective: Use the Δ Inequality Theorem to identify possible Δs and prove Δ relationships. CCSS: G.C0.10, G.MG.3.
Chapter 5.5 Notes: Use Inequalities in a Triangle Goal: You will find possible side lengths of a triangle.
5.3 Trade Routes and Pasta Anyone?
Chapter 4-3 Inequalities in One Triangle Inequalities in Two Triangles.
Triangle Inequalities
5-5 Indirect Proof and Inequalities in One Triangle Warm Up
Objectives Apply inequalities in one triangle..
5-5 Indirect Proof and Inequalities in One Triangle Warm Up
The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.
Objectives Write indirect proofs. Apply inequalities in one triangle.
Triangle Inequalities
You found the relationship between the angle measures of a triangle. Recognize and apply properties of inequalities to the measures of the angles.
Homework: Maintenance Sheet 17 *Due Thursday
Triangle Inequalities
Warm Up What’s Wrong With Each Picture? 38° 65° 75°
Triangle Inequalities
Triangle Inequalities
Try This… Measure (using your ruler), three segments 2 inches
LESSON 5-5 INEQUALITIES IN TRIANGLES OBJECTIVE: To use inequalities involving angles and sides of triangles.
Pearson Unit 1 Topic 5: Relationships Within Triangles 5-7: Inequalities in One Triangle Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
TRIANGLE INEQUALITY THEOREM
Class Greeting.
BASIC GEOMETRY Section 5: Inequalities in one Triangle
Triangle Inequalities
The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.
Class Greeting.
TRIANGLE INEQUALITY THEOREM
TRIANGLE INEQUALITY THEOREM
Triangle Inequalities
Inequalities in Triangles
Vocabulary Indirect Proof
Learning Targets I will identify the first step in an indirect proof.
Triangle Inequalities
Triangle Inequalities
Triangle Relationships
Presentation transcript:

Objectives Apply inequalities in one triangle.

The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.

Example 2A: Ordering Triangle Side Lengths and Angle Measures Write the angles in order from smallest to largest. The shortest side is , so the smallest angle is F. The longest side is , so the largest angle is G. The angles from smallest to largest are F, H and G.

Example 2B: Ordering Triangle Side Lengths and Angle Measures Write the sides in order from shortest to longest. mR = 180° – (60° + 72°) = 48° The smallest angle is R, so the shortest side is . The largest angle is Q, so the longest side is . The sides from shortest to longest are

Check It Out! Example 2a Write the angles in order from smallest to largest. The shortest side is , so the smallest angle is B. The longest side is , so the largest angle is C. The angles from smallest to largest are B, A, and C.

Check It Out! Example 2b Write the sides in order from shortest to longest. mE = 180° – (90° + 22°) = 68° The smallest angle is D, so the shortest side is . The largest angle is F, so the longest side is . The sides from shortest to longest are

A triangle is formed by three segments, but not every set of three segments can form a triangle.

A certain relationship must exist among the lengths of three segments in order for them to form a triangle.

Example 3A: Applying the Triangle Inequality Theorem Tell whether a triangle can have sides with the given lengths. Explain. 7, 10, 19 No—by the Triangle Inequality Theorem, a triangle cannot have these side lengths.

Example 3B: Applying the Triangle Inequality Theorem Tell whether a triangle can have sides with the given lengths. Explain. 2.3, 3.1, 4.6    Yes—the sum of each pair of lengths is greater than the third length.

Check It Out! Example 3a Tell whether a triangle can have sides with the given lengths. Explain. 8, 13, 21 No—by the Triangle Inequality Theorem, a triangle cannot have these side lengths.

Check It Out! Example 3b Tell whether a triangle can have sides with the given lengths. Explain. 6.2, 7, 9    Yes—the sum of each pair of lengths is greater than the third side.

Example 4: Finding Side Lengths The lengths of two sides of a triangle are 8 inches and 13 inches. Find the range of possible lengths for the third side. Let x represent the length of the third side. Then apply the Triangle Inequality Theorem. x + 8 > 13 x + 13 > 8 8 + 13 > x x > 5 x > –5 21 > x Combine the inequalities. So 5 < x < 21. The length of the third side is greater than 5 inches and less than 21 inches.

Check It Out! Example 4 The lengths of two sides of a triangle are 22 inches and 17 inches. Find the range of possible lengths for the third side. Let x represent the length of the third side. Then apply the Triangle Inequality Theorem. x + 22 > 17 x + 17 > 22 22 + 17 > x x > –5 x > 5 39 > x Combine the inequalities. So 5 < x < 39. The length of the third side is greater than 5 inches and less than 39 inches.

Example 5: Travel Application The figure shows the approximate distances between cities in California. What is the range of distances from San Francisco to Oakland? Let x be the distance from San Francisco to Oakland. x + 46 > 51 x + 51 > 46 46 + 51 > x Δ Inequal. Thm. x > 5 x > –5 97 > x Subtr. Prop. of Inequal. 5 < x < 97 Combine the inequalities. The distance from San Francisco to Oakland is greater than 5 miles and less than 97 miles.