Volume 22, Issue 10, Pages (October 2015)

Slides:



Advertisements
Similar presentations
Debosmita Sardar, Zhenjian Lin, Eric W. Schmidt  Chemistry & Biology 
Advertisements

Volume 23, Issue 4, Pages (April 2016)
Volume 15, Issue 6, Pages (June 2008)
Volume 23, Issue 4, Pages (April 2016)
Macrolactamization of Glycosylated Peptide Thioesters by the Thioesterase Domain of Tyrocidine Synthetase  Hening Lin, Desiree A. Thayer, Chi-Huey Wong,
Katharina M. Hoyer, Christoph Mahlert, Mohamed A. Marahiel 
Tailor-Made Peptide Synthetases
Volume 21, Issue 2, Pages (February 2014)
Construction and in vitro analysis of a new bi-modular polypeptide synthetase for synthesis of N-methylated acyl peptides  Florian Schauwecker, Frank.
Volume 15, Issue 3, Pages (March 2008)
Miglena Manandhar, John E. Cronan  Chemistry & Biology 
Genomic Mining for Aspergillus Natural Products
Volume 15, Issue 2, Pages (February 2008)
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Volume 14, Issue 1, Pages (January 2007)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Volume 23, Issue 4, Pages (April 2016)
Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster  Susumu Okamoto,
Volume 18, Issue 9, Pages (September 2011)
Chemical Probes of UDP-Galactopyranose Mutase
Volume 20, Issue 8, Pages (August 2013)
Volume 17, Issue 10, Pages (October 2010)
Volume 19, Issue 2, Pages (February 2012)
Volume 21, Issue 8, Pages (August 2014)
A Revised Pathway Proposed for Staphylococcus aureus Wall Teichoic Acid Biosynthesis Based on In Vitro Reconstitution of the Intracellular Steps  Stephanie.
Redesign of a Dioxygenase in Morphine Biosynthesis
Identification and Characterization of the Lysobactin Biosynthetic Gene Cluster Reveals Mechanistic Insights into an Unusual Termination Module Architecture 
Volume 14, Issue 1, Pages (January 2007)
Volume 20, Issue 12, Pages (December 2013)
Kento Koketsu, Hiroki Oguri, Kenji Watanabe, Hideaki Oikawa 
Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis  Anna L. Vagstad, Eric A. Hill, Jason W.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Kevin J. Forsberg, Sanket Patel, Timothy A. Wencewicz, Gautam Dantas 
Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides  Tobias W. Giessen, Alexander M.
Structure-Guided Design of Fluorescent S-Adenosylmethionine Analogs for a High- Throughput Screen to Target SAM-I Riboswitch RNAs  Scott F. Hickey, Ming C.
Beena Krishnan, Lila M. Gierasch  Chemistry & Biology 
Sherry S. Lamb, Tejal Patel, Kalinka P. Koteva, Gerard D. Wright 
Johnson Cheung, Michael E.P. Murphy, David E. Heinrichs 
PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules  Steffen Lorenz Drees,
A Subdomain Swap Strategy for Reengineering Nonribosomal Peptides
Benoit Villiers, Florian Hollfelder  Chemistry & Biology 
Volume 17, Issue 4, Pages (April 2010)
Tandem Enzymatic Oxygenations in Biosynthesis of Epoxyquinone Pharmacophore of Manumycin-type Metabolites  Zhe Rui, Moriah Sandy, Brian Jung, Wenjun Zhang 
In Vivo Resolution of Conflicting In Vitro Results: Synthesis of Biotin from Dethiobiotin Does Not Require Pyridoxal Phosphate  Ahmed M. Abdel-Hamid,
Volume 20, Issue 6, Pages (June 2013)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool  Sina Rütschlin, Sandra Gunesch, Thomas.
Volume 22, Issue 6, Pages (June 2015)
Volume 18, Issue 4, Pages (April 2011)
Gerald Lackner, Markus Bohnert, Jonas Wick, Dirk Hoffmeister 
Volume 18, Issue 12, Pages (December 2011)
Volume 18, Issue 11, Pages (November 2011)
Vanessa V. Phelan, Yu Du, John A. McLean, Brian O. Bachmann 
Volume 17, Issue 3, Pages (March 2010)
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
Aza-Tryptamine Substrates in Monoterpene Indole Alkaloid Biosynthesis
Volume 15, Issue 9, Pages (September 2008)
Volume 18, Issue 1, Pages (January 2011)
Volume 20, Issue 10, Pages (October 2013)
Volume 18, Issue 4, Pages (April 2011)
Volume 18, Issue 11, Pages (November 2011)
Biomimetic Thioesters as Probes for Enzymatic Assembly Lines: Synthesis, Applications, and Challenges  Jakob Franke, Christian Hertweck  Cell Chemical.
Volume 12, Issue 3, Pages (March 2005)
Cracking the Nonribosomal Code
Benoit Villiers, Florian Hollfelder  Chemistry & Biology 
Debosmita Sardar, Zhenjian Lin, Eric W. Schmidt  Chemistry & Biology 
Volume 21, Issue 3, Pages (March 2014)
A One-Pot Chemoenzymatic Synthesis for the Universal Precursor of Antidiabetes and Antiviral Bis-Indolylquinones  Patrick Schneider, Monika Weber, Karen.
Volume 12, Issue 10, Pages (October 2005)
Volume 18, Issue 3, Pages (March 2011)
Presentation transcript:

Volume 22, Issue 10, Pages 1325-1334 (October 2015) Three Redundant Synthetases Secure Redox-Active Pigment Production in the Basidiomycete Paxillus involutus  Jana Braesel, Sebastian Götze, Firoz Shah, Daniel Heine, James Tauber, Christian Hertweck, Anders Tunlid, Pierre Stallforth, Dirk Hoffmeister  Chemistry & Biology  Volume 22, Issue 10, Pages 1325-1334 (October 2015) DOI: 10.1016/j.chembiol.2015.08.016 Copyright © 2015 Elsevier Ltd Terms and Conditions

Chemistry & Biology 2015 22, 1325-1334DOI: (10. 1016/j. chembiol. 2015 Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 1 l-Tyrosine-Derived Paxillus Pigments Schematic of pigment biosynthesis. l-Tyrosine is deaminated to 4-hydroxyphenylpyruvic acid by a PLP-dependent transaminase, followed by covalent tethering as a thioester and oxoester onto the thiolation and thioesterase domains, respectively, of the InvAx synthetases (x = 1, 2, 5). Two alternative theoretical routes may complete cyclopentenone biosynthesis. Route 1 (red) includes direct decarboxylative condensation (black and red arrows between 4-hydroxyphenylpyruvic acid units) into gyrocyanin, i.e., the common diarylcyclopentenone intermediate. Experimentally verified route 2 (blue) involves symmetric condensation (black and blue arrows between 4-hydroxyphenylpyruvic acid units) into atromentin, followed by oxidative ring contraction to yield gyrocyanin. Dotted arrows indicate a possible shunt within route 2 via atromentic acid. Chemistry & Biology 2015 22, 1325-1334DOI: (10.1016/j.chembiol.2015.08.016) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 2 Physical Map of Biosynthetic Genes and Synthetase Gene Structures (A) Genes invA1-invA6 (black arrows) and adjacent reading frames are located on scaffolds 4 and 16 in the genome of P. involutus. Open arrows represent hypothetical reading frames; gray arrows represent putative transporter and biosynthesis genes. Protein IDs for InvA1 to InvA6 are indicated below the respective arrows, and base counts of the scaffolds are indicated above the genes. For clarity, introns are not shown. (B) Comparison of the structures of P. involutus synthetase genes invA1–A6 (black) and basidiomycete orthologs atrA of Tapinella panuoides and greA of Suillus grevillei (gray). Lines represent introns. The domain setup of InvA1–A6, AtrA, and GreA is shown below the genes. A, adenylation domain; T, thiolation domain; TE, thioesterase domain. Chemistry & Biology 2015 22, 1325-1334DOI: (10.1016/j.chembiol.2015.08.016) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 3 Substrate Specificity of the Adenylation Domains InvA1 to InvA6 Substrate specificity was determined in vitro using the substrate-dependent ATP-[32P]pyrophosphate exchange assay. Error bars indicate SD. Left: InvA1 and InvA2; center: InvA3 and InvA5; right: InvA4 and InvA6. The latter enzymes were tested with 37 substrates, combined in nine pools (Table S2). Polyacrylamide gels of purified proteins and initial substrate screens are shown in Figure S1. Chemistry & Biology 2015 22, 1325-1334DOI: (10.1016/j.chembiol.2015.08.016) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 4 Chromatographic Analysis of InvA-Mediated In Vitro Synthesis of Atromentin by PptA-Primed Synthetases (A) Enzymatic reactions and authentic atromentin standard. Single asterisk indicates control without ATP, double asterisk control without PPTase, and triple asterisk the reaction. Absorption of the signal at tR = 11.9 min is: InvA1, 661 mAU; InvA2, 394 mAU; InvA5, 635 mAU; InvA335, 258 mAU; standard, 745 mAU. The signals at tR = 9.0 and 9.5 min represent unconverted substrates. Maximum absorption in InvA3 and InvA553 chromatograms was <20 mAU; for all other chromatograms the maximum absorption was 800 mAU. (B) High-resolution mass spectrometry profile and UV-visible spectrum of authentic atromentin. These spectra were also found in enzymatic reactions. Detection wavelength was λ = 254 nm. Chemistry & Biology 2015 22, 1325-1334DOI: (10.1016/j.chembiol.2015.08.016) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 5 Chromatographic Analysis of the Isotope-Labeling Experiment (A) Tetradeuterated atromentin, added to P. involutus mycelial homogenate. (B and C) Authentic atromentin (B) and synthetic gyrocyanin (C). Chromatographic signals: tR = 25.7 min for involutin (compound 1); tR = 38.9 min for gyroporin (2); tR = 52.3 min for gyrocyanin (3); tR = 60.4 min for atromentin (4). Detection wavelength was λ = 254 nm. Mass spectra of mycelial homogenate supplemented with unlabeled atromentin are shown in Figure S2. Chemistry & Biology 2015 22, 1325-1334DOI: (10.1016/j.chembiol.2015.08.016) Copyright © 2015 Elsevier Ltd Terms and Conditions