Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time

Slides:



Advertisements
Similar presentations
Consolidation Theory Examples.
Advertisements

Settlement Immediate settlement – Caused by elastic deformation of dry and moist soil without any change in moisture content Primary Consolidation Settlement.
water squeezed from sample drains freely into chamber
Area of a circle Radius r (m) Area A (m 2 ) when r = 2.5 A = 20 (to 2sf) when A = 30 r = 3.1 (to 2sf)
Solve the equation for y. SOLUTION EXAMPLE 2 Graph an equation Graph the equation –2x + y = –3. –2x + y = –3 y = 2x –3 STEP 1.
Warm-Up 4 minutes Solve each equation. 1) x + 5 = 02) 5x = 03) 5x + 2 = 0 4) x 2 - 5x = 05) x 2 – 5x – 14 = 06) x 3 + 3x 2 – 54x = 0.
Graphing Rational Functions Day 3. Graph with 2 Vertical Asymptotes Step 1Factor:
FE: Geotechnical Engineering
§ 1.3 Intercepts.
Since all points on the x-axis have a y-coordinate of 0, to find x-intercept, let y = 0 and solve for x Since all points on the y-axis have an x-coordinate.
Kamal Tawfiq, Ph.D., P.E., F.ASCE
Slope of a Line The slope of a nonvertical line is a measure of the number of units the line rises or falls vertically for each unit of horizontal change.
Average Rate of Change of a Function
Quadratic Functions.
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: The Lightest I Beam
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Find: u [kPa] at point B D C B A Water Sand Silt Aquifer x
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Experiment # 6 Consolidation ASTM D 1883 Soil Mechanics Lab CE 350.
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: db [ft] Ho’ db Ho’ = 10 [ft] A) 7.75 B) C) 14.75
Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: L [ft] L L d A) 25 B) 144 C) 322 D) 864 T = 13 [s] d = 20 [ft]
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Presentation transcript:

Find: cV [in2/min] 0.01 0.02 Deformation Data C) 0.03 D) 0.04 Time plan view of 0.01 0.02 C) 0.03 D) 0.04 sample in ring Deformation Data Time Deformation [min] [in] 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Load profile view of Find the consolidation coefficient, C sub v, in inches squared per minute. In this problem, soil loaded in consolidometer Ho=1.06 [in] double drain

Find: cV [in2/min] 0.01 0.02 Deformation Data C) 0.03 D) 0.04 Time plan view of 0.01 0.02 C) 0.03 D) 0.04 sample in ring Deformation Data Time Deformation [min] [in] 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Load profile view of a sample of soil is loaded into a metal ring, soil loaded in consolidometer Ho=1.06 [in] double drain

Find: cV [in2/min] 0.01 0.02 Deformation Data C) 0.03 D) 0.04 Time plan view of 0.01 0.02 C) 0.03 D) 0.04 sample in ring Deformation Data Time Deformation [min] [in] 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Load profile view of and tested in a consolidometer. soil loaded in consolidometer Ho=1.06 [in] double drain

Find: cV [in2/min] 0.01 0.02 Deformation Data C) 0.03 D) 0.04 Time plan view of 0.01 0.02 C) 0.03 D) 0.04 sample in ring Deformation Data Time Deformation [min] [in] 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Load profile view of We also been provided soil data. soil loaded in consolidometer Ho=1.06 [in] double drain

Find: cV [in2/min] 0.01 0.02 Deformation Data C) 0.03 D) 0.04 abbreviated table plan view of 0.01 0.02 C) 0.03 D) 0.04 sample in ring Deformation Data Time Deformation [min] [in] 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Load profile view of As well as testing results. The deformation, or displacement, of the soil was recorded at various time intervals. soil loaded in consolidometer Ho=1.06 [in] double drain

Find: cV [in2/min] Time Deformation Time Deformation [min] [in] [min] 0.1 0.25 0.5 1 2 4 8 0.0000 0.0035 0.0040 0.0050 0.0080 0.0120 0.0165 0.0195 15 30 60 120 240 480 1440 0.0220 0.0235 0.0250 0.0260 0.0268 0.0270 0.0275 The entire set of deformation data is listed here. [pause] The general equation for ---

Find: cV [in2/min] cv * t T= (HD)2 Deformation Data Time Deformation 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 the time rate of consolidation is solved for the consolidation coefficient, C sub v. Ho=1.06 [in] double drain

Find: cV [in2/min] cv * t T= (HD)2 T * (HD)2 cv = t Deformation Data Time Deformation T * (HD)2 [min] [in] cv = t 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 --- Ho=1.06 [in] double drain

Find: cV [in2/min] cv * t T= (HD)2 T * (HD)2 cv = t Deformation Data Time Deformation T * (HD)2 [min] [in] cv = t 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 We’ll use the soil data to determine the drainage height, Ho=1.06 [in] double drain

Find: cV [in2/min] cv * t T= (HD)2 T * (HD)2 cv = t Deformation Data Time Deformation T * (HD)2 [min] [in] cv = t 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 and the deformation data to determine the time factor, big T, and the duration of settlement, small t. Ho=1.06 [in] double drain

Find: cV [in2/min] cv * t T= (HD)2 T * (HD)2 cv = t Deformation Data Time Deformation T * (HD)2 [min] [in] cv = t 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Let’s solve for the drainage height, first. Ho=1.06 [in] double drain

Find: cV [in2/min] cv * t T= (HD)2 T * (HD)2 cv = t Deformation Data Time Deformation T * (HD)2 [min] [in] cv = t 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Load The initial height of the sample if 1.06 inches, Ho Ho=1.06 [in] double drain

Find: cV [in2/min] cv * t T= (HD)2 T * (HD)2 cv = t Deformation Data Time Deformation T * (HD)2 [min] [in] cv = t 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Load but since the soil is doubly drained, meaning, water can exit the sample through both the top and bottom of the ring, Ho Ho=1.06 [in] double drain

Find: cV [in2/min] cv * t T= (HD)2 T * (HD)2 cv = t Deformation Data Time Deformation T * (HD)2 [min] [in] cv = t 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Load the drainage height is half the total height, or, 0.53 inches. Ho HD=0.53 [in] Ho=1.06 [in] double drain

Find: cV [in2/min] cv * t T= (HD)2 T * (HD)2 cv = t Deformation Data Time Deformation T * (HD)2 [min] [in] cv = t 0.1 0.25 0.5 … 480 1440 0.0000 0.0035 0.0040 0.0050 … 0.0270 0.0275 Next we solve for our time factor, and duration of settlement.

Find: cV [in2/min] T * (HD)2 cv = t Time Deformation [min] [in] 4 8 15 30 60 120 240 480 1440 0.0165 0.0195 0.0220 0.0235 0.0250 0.0260 0.0268 0.0270 0.0275 Time Deformation [min] [in] 0.1 0.25 0.5 1 2 0.0000 0.0035 0.0040 0.0050 0.0080 0.0120 Again, we see the entire set of data. We’ll generate a semi-log plot ---

Find: cV [in2/min] ΔH [in] Time [min] where the vertical axis is deformation, or displacement, in inches, Time [min]

Find: cV [in2/min] ΔH [in] Time [min] and the horizontal axis is time, in minutes, plotted on a log scale. Time [min]

Find: cV [in2/min] ΔH [in] 0.000 0.005 0.010 0.015 0.020 0.025 0.030 After the data points are plotted, 0.025 0.030 0.1 1 10 100 1000 Time [min]

Find: cV [in2/min] T * (HD)2 cv = t ΔH [in] 0.000 0.005 0.010 0.015 0.020 we return to our time rate of consolidation equation. 0.025 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T * (HD)2 cv = t ΔH [in] 0.000 0.005 0.010 0.015 where U=50% Find: cV [in2/min] T * (HD)2 ΔH [in] cv = t 0.000 ? 0.005 0.010 0.015 0.020 Our goal here is to find the time duration, little t, it will take the soil to consolidate 50% of it’s ultimate consolidation. 0.025 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 where U=50% Find: cV [in2/min] T50 * (HD)2 ΔH [in] cv = t50 0.000 ? 0.005 0.010 0.015 0.020 Knowing the average degree of consolidation, U, is 50%, we can solve for the time factor, big T. 0.025 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] π * U2 T50 * (HD)2 cv = t50 If U<60% then T= 4 where U=50% Find: cV [in2/min] T50 * (HD)2 cv = t50 ? π * U2 If U<60% then T= 4 When U is less than 60%, T is about PI times, U squared, divided by 4, where U is a decimal.

? Find: cV [in2/min] π * U2 T50 * (HD)2 cv = t50 If U<60% then T= 4 where U=50% Find: cV [in2/min] T50 * (HD)2 cv = t50 ? π * U2 If U<60% then T= 4 then T=1.781-0.933*log(100%-U) If U>60% When U is greater than 60%, T is solved using this second equation, where U is a percent.

? Find: cV [in2/min] π * U2 T50 * (HD)2 cv = t50 If U<60% then T= 4 where U=50% Find: cV [in2/min] T50 * (HD)2 cv = t50 0.50 ? π * U2 If U<60% then T= 4 Since U is 50%, we’ll use the first equation.

? Find: cV [in2/min] π * U2 T50 * (HD)2 cv = t50 If U<60% then T= 4 where U=50% Find: cV [in2/min] T50 * (HD)2 cv = t50 0.50 ? π * U2 If U<60% then T= 4 T=0.197 The time factor is 0.197.

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 0.015 0.020 To solve the for time it takes the soil to consolidate to half it’s ultimate consolidation, 0.025 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 consolidation settlement 0.010 0.015 0.020 we draw a best fit line along the data points for consolidation settlement, 0.025 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 consolidation settlement 0.010 0.015 creep settlement 0.020 and a second best fit line along the data points for creep settlement. 0.025 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 consolidation settlement “primary consolidation” 0.010 0.015 creep settlement “secondary consolidation” 0.020 As an aside, some books refer to these two types of settlement as primary consolidation and secondary consolidation. 0.025 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 consolidation settlement 0.010 0.015 creep settlement 0.020 Where these two lines intersect represents the displacement of the soil sample, at ultimate consolidation, 0.025 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 consolidation settlement 0.010 0.015 creep settlement 0.020 This ultimate consolidation is 0.025 inches. 0.025 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 0.015 0.020 Next, we draw horizontal lines at the data points corresponding to the time of 0.25 minutes and 1 minute. 0.025 D100 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 x 0.005 x 0.010 0.015 0.020 Then we add a third horizontal line above the two horizontal line, and with equal separation as between the first two. 0.025 D100 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 0.015 0.020 This third line represents the displacement when no consolidation settlement has occurred. 0.025 D100 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 0.015 0.020 The displacement of the soil at 50% ultimate consolidation, 0.025 D100 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 D50=0.013 [in] 0.015 0.020 is determined by averaging the 0 percent and 100 percent displacement values. 0.025 D100 0.030 0.1 1 10 100 1000 Time [min]

? Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 D50=0.013 [in] 0.015 0.020 From the graph, we can determine the time it will take the soil to consolidate to 50% of its ultimate consolidation, 0.025 0.030 0.1 1 10 100 1000 Time [min]

Find: cV [in2/min] T50 * (HD)2 cv = t50 ΔH [in] 0.000 0.005 0.010 D50=0.013 [in] 0.015 0.020 by tracing a line horizontally, right, to the lab test data, and then vertically, down, to the time axis. Our t sub 50 is 2.7 minutes. [pause] 0.025 t50=2.7 [min] 0.030 0.1 1 10 100 1000 Time [min]

Find: cV [in2/min] T50 * (HD)2 cv = t50 0.197 0.53 [in] 2.7 [min] Plugging in our known values,

Find: cV [in2/min] T50 * (HD)2 cv = t50 cv = 0.020 [in2/min] 0.197 We calculate the consolidation coefficient to be 0.020 inches squared per minute.

Find: cV [in2/min] T50 * (HD)2 cv = t50 0.01 0.02 C) 0.03 D) 0.04 0.197 0.53 [in] T50 * (HD)2 0.01 0.02 C) 0.03 D) 0.04 cv = t50 2.7 [min] cv = 0.020 [in2/min] Compared with our possible solutions,

Find: cV [in2/min] T50 * (HD)2 cv = t50 0.01 0.02 C) 0.03 D) 0.04 0.197 0.53 [in] T50 * (HD)2 0.01 0.02 C) 0.03 D) 0.04 cv = t50 2.7 [min] cv = 0.020 [in2/min] Answer  B the answer is B.

( ) ? γclay=53.1[lb/ft3] Index σ’v = Σ γ d H*C σfinal ρcn= log Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘