A Ferritin-Based Label for Cellular Electron Cryotomography

Slides:



Advertisements
Similar presentations
Volume 19, Issue 11, Pages (November 2011)
Advertisements

Gemmata obscuriglobus
Molecular Tattoo: Subcellular Confinement of Drug Effects
Volume 18, Issue 6, Pages (June 2010)
Volume 89, Issue 7, Pages (June 1997)
The Cilium Secretes Bioactive Ectosomes
Robert Englmeier, Stefan Pfeffer, Friedrich Förster  Structure 
Volume 23, Issue 3, Pages (April 2018)
Volume 20, Issue 5, Pages (May 2012)
Volume 13, Issue 9, Pages (September 2005)
Volume 26, Issue 1, Pages e3 (January 2018)
Chen-Chou Wu, William J. Rice, David L. Stokes  Structure 
Naomi R. Stevens, Hélio Roque, Jordan W. Raff  Developmental Cell 
Direct Membrane Binding by Bacterial Actin MreB
Asymmetric Microtubule Pushing Forces in Nuclear Centering
Xianfeng Morgan Xu, Tea Meulia, Iris Meier  Current Biology 
Reconstitution of Amoeboid Motility In Vitro Identifies a Motor-Independent Mechanism for Cell Body Retraction  Katsuya Shimabukuro, Naoki Noda, Murray.
Organization of Actin Networks in Intact Filopodia
Volume 18, Issue 19, Pages (October 2008)
Jan Harapin, Matthias Eibauer, Ohad Medalia  Structure 
Overexpressing Centriole-Replication Proteins In Vivo Induces Centriole Overduplication and De Novo Formation  Nina Peel, Naomi R. Stevens, Renata Basto,
Zhang-Yi Liang, Mark Andrew Hallen, Sharyn Anne Endow  Current Biology 
Volume 22, Issue 9, Pages (September 2014)
Volume 14, Issue 6, Pages (June 2006)
Dan Zhang, Aleksandar Vjestica, Snezhana Oliferenko  Current Biology 
Solution Structures of Engineered Vault Particles
Tricorn Protease Exists as an Icosahedral Supermolecule In Vivo
EB3 Regulates Microtubule Dynamics at the Cell Cortex and Is Required for Myoblast Elongation and Fusion  Anne Straube, Andreas Merdes  Current Biology 
Wood Cell-Wall Structure Requires Local 2D-Microtubule Disassembly by a Novel Plasma Membrane-Anchored Protein  Yoshihisa Oda, Yuki Iida, Yuki Kondo,
Volume 20, Issue 10, Pages (May 2010)
Reconstitution of Amoeboid Motility In Vitro Identifies a Motor-Independent Mechanism for Cell Body Retraction  Katsuya Shimabukuro, Naoki Noda, Murray.
Volume 22, Issue 8, Pages (April 2012)
Volume 74, Issue 2, Pages (April 2012)
Matthew Holt, Anne Cooke, Andreas Neef, Leon Lagnado  Current Biology 
Volume 25, Issue 20, Pages (October 2015)
Anam Qudrat, Abdullah Al Mosabbir, Kevin Truong  Cell Chemical Biology 
EB1-Recruited Microtubule +TIP Complexes Coordinate Protrusion Dynamics during 3D Epithelial Remodeling  Sarah Gierke, Torsten Wittmann  Current Biology 
Volume 13, Issue 12, Pages (December 2005)
Marko Kaksonen, Christopher P. Toret, David G. Drubin  Cell 
Subcellular Distribution of Actively Partitioning F Plasmid during the Cell Division Cycle in E. coli  Hironori Niki, Sota Hiraga  Cell  Volume 90, Issue.
Crystal Structure of Group II Chaperonin in the Open State
Travis I. Moore, Jesse Aaron, Teng-Leong Chew, Timothy A. Springer 
The Bacterial Cytoskeleton
Volume 4, Issue 6, Pages (December 2008)
Susana Gomis-Rüth, Corette J. Wierenga, Frank Bradke  Current Biology 
Volume 80, Issue 6, Pages (December 2013)
iMEM: Isolation of Plasma Membrane for Cryoelectron Microscopy
Control of Centriole Length by CPAP and CP110
Volume 20, Issue 9, Pages (September 2012)
Natalie Elia, Carolyn Ott, Jennifer Lippincott-Schwartz  Cell 
Volume 6, Issue 10, Pages (October 1998)
Tradeoffs and Optimality in the Evolution of Gene Regulation
Volume 13, Issue 2, Pages (February 2006)
Yuri Oleynikov, Robert H. Singer  Current Biology 
Volume 23, Issue 12, Pages (December 2015)
Volume 2, Issue 6, Pages (December 2012)
Volume 129, Issue 2, Pages (April 2007)
Crystal Structure of Group II Chaperonin in the Open State
Wood Cell-Wall Structure Requires Local 2D-Microtubule Disassembly by a Novel Plasma Membrane-Anchored Protein  Yoshihisa Oda, Yuki Iida, Yuki Kondo,
Volume 6, Issue 4, Pages (July 2013)
Volume 11, Pages (January 2019)
The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles
Volume 26, Issue 4, Pages e6 (April 2019)
Volume 17, Issue 2, Pages (February 2009)
Volume 13, Issue 10, Pages (October 2005)
The Anterior-Posterior Axis Emerges Respecting the Morphology of the Mouse Embryo that Changes and Aligns with the Uterus before Gastrulation  Daniel.
Volume 16, Issue 2, Pages (February 2009)
Volume 14, Issue 1, Pages (January 2006)
Marko Kaksonen, Yidi Sun, David G. Drubin  Cell 
Volume 18, Issue 6, Pages (June 2010)
Presentation transcript:

A Ferritin-Based Label for Cellular Electron Cryotomography Qing Wang, Christopher P. Mercogliano, Jan Löwe  Structure  Volume 19, Issue 2, Pages 147-154 (February 2011) DOI: 10.1016/j.str.2010.12.002 Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 1 Assembly and Iron-Loading of Ferritin Overproduced in E. coli (A) Surface representation of the crystal structure of E. coli FtnA protein (Stillman et al., 2001). Half of the ferritin shell is shown, exposing the inner cavity with a diameter of roughly 7.5 nm. (B) Growth curves of E. coli cells grown in LB medium supplemented with 0, 0.2, or 1 mM of Fe(II), respectively. Medium with 10 μg/ml of Chloramphenicol is used as a control. (C and D) Electron cryomicroscopy of empty and iron-loaded ferritin particles isolated from cells grown in LB medium or LB supplemented with 1 mM Fe(II), respectively. Scale bars: 30 nm. See also Figure S1. Structure 2011 19, 147-154DOI: (10.1016/j.str.2010.12.002) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 2 Direct Visualization of Ferritin Inside E. coli Cells by Electron Cryotomography (A) Visual comparison of tomogram slices of cells grown in M9 media with 1 mM iron and with or without overproducing ferritin. (B) Slices through tomograms of cells with ferritin overexpressed (left) and density profile along the slices (right), showing peaks at positions corresponding to location of putative ferritin dots. (C) Higher magnification of regions in (A) containing multiple ferritin dots. (D) 3D surface plot of a region in the tomogram slice with a peak corresponding to the ferritin dot near the center. Scale bars: 100 nm for (A), and 50 nm for (B)–(D). See also Movie S1. Structure 2011 19, 147-154DOI: (10.1016/j.str.2010.12.002) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 3 Ferritin Can Be Tethered to the Cytoplasmic Membrane with a Membrane Targeting Sequence (mts) (A) Diagram showing all ferritin constructs used in this study, and a cartoon illustrating one ferritin fusion particle (only 6 out of 24 fusion partners are shown). (B) Fluorescence microscopy image of cells expressing mts-GFP-FtnA (green) stained with FM4-64 (pink) for membrane. (C) and (E) 10 nm slices through tomograms for cells expressing mts-ferritin. Insets show the same cells at a lower magnification. (D) and (F) 3D segmentations of the inner membrane (cyan), outer membrane (yellow), membrane vesicles (green) and mts-ferritin (pink) in tomograms of the same cells in (C) and (E). Scale bar: 2 μm for (B), 50 nm for (C) and (E), and 100 nm for (D) and (F). See also Figure S2 and Movies S2 and S3. Structure 2011 19, 147-154DOI: (10.1016/j.str.2010.12.002) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 4 Ferritin Labeling the Chemosensory Machinery of E. coli (A and B) Fluorescence microscopy images of cells expressing CheY-GFP-FtnA (green) stained with FM4-64 (pink) for membrane. Cells in (B) were treated with 10 μg/ml cephalexin for 2 hr. (C) Slice (10 nm) through the tomogram of a cell with visible chemoreceptor arrays (white arrows) near the cell pole. Inset shows the same cell at a lower magnification. (D) and (F) 10 nm slices through tomograms of cells expressing CheY-ferritin. The cell shown in (F) was treated with cephalexin as described for (B). Insets show the same cells at a lower magnification. (E) and (G) 3D segmentations of the inner membrane (cyan), outer membrane (yellow), CheY-ferritin (pink), and putative chemoreceptor clusters (green) in tomograms of the same cells in (D) and (F), respectively. Scale bar: 2 μm for (A) and (B), 50 nm for (D) and (F), and 100 nm for (E) and (G). See also Figures S3 and S4 and Movie S4. Structure 2011 19, 147-154DOI: (10.1016/j.str.2010.12.002) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 5 Ferritin Labeling the Septum of E. coli with ZapA (A) and (B) Fluorescence microscopy images of cells expressing low and high levels of ZapA-GFP-FtnA (green) stained with FM4-64 (pink) for membrane. (C–E) 10 nm slices through the tomograms of septum regions of cells expressing ZapA-ferritin (marked with white arrowheads). Insets (i) show the same cells at a lower magnification. Insets (ii) show the 3D segmentation of the inner membrane (cyan), outer membrane (yellow), and ZapA-ferritin (pink) in tomogram of the same cells. Scale bars: 2 μm for (A) and (B), 50 nm for (C)–(E), and 100 nm for insets in (C)–(E). See also Figure S5 and Movie S5. Structure 2011 19, 147-154DOI: (10.1016/j.str.2010.12.002) Copyright © 2011 Elsevier Ltd Terms and Conditions