Geometry Section 10.3.

Slides:



Advertisements
Similar presentations
6.3Apply Properties of Chords Theorem 6.5 In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding.
Advertisements

Bell work Find the value of radius, x, if the diameter of a circle is 25 ft. 25 ft x.
In the diagram of C, QR = ST = 16. Find CU.
6.1 Use Properties of Tangents
EXAMPLE 2 Use perpendicular bisectors SOLUTION STEP 1 Label the bushes A, B, and C, as shown. Draw segments AB and BC. Three bushes are arranged in a garden.
Circles and Chords. Vocabulary A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
Lesson 6.2 Properties of Chords
Chapter 10 Properties of Circles
Geometry Arcs and Chords September 13, 2015 Goals  Identify arcs & chords in circles  Compute arc measures and angle measures.
MM2G3 Students will understand properties of circles. MM2G3 d Justify measurements and relationships in circles using geometric and algebraic properties.
Properties of a Chord Circle Geometry Homework: Lesson 6.2/1-12, 18
Chapter 10.3 Notes: Apply Properties of Chords
Chapter 10.
Section 11-2 Chords and Arcs SPI 32B: Identify chords of circles given a diagram SPI 33A: Solve problems involving the properties of arcs, tangents, chords.
[10.2] Perpendicular Bisector  Draw a Chord AB  Find the Midpoint of AB (Label it M)  From M, draw a line through O  What do you notice? Circle #1.
GEOMETRY: Chapter : Chords#2. Image taken from: Geometry. McDougal Littell: Boston, P Theorem 10.4 In the same circle, or in congruent.
12.2 Chords and Arcs Theorem 12.4 and Its Converse Theorem –
Unit 3: Circles & Spheres
Warm-Up a. mBD b. mACE c. mDEB d. mABC 140° 130° 230° 270°
MM2G3a Understand and use properties of chords, tangents, and secants as an application of triangle similarity.
11-2 Chords and Arcs  Theorems: 11-4, 11-5, 11-6, 11-7, 11-8  Vocabulary: Chord.
Arcs and Chords Geometry.
10.3 Warm Up Warm Up Lesson Quiz Lesson Quiz Lesson Presentation Lesson Presentation Apply Properties of Chords.
Section 10.2 – Arcs and Chords
GeometryGeometry 12.3 Arcs and Chords Geometry. Geometry Geometry Objectives/Assignment Use properties of arcs of circles, as applied. Use properties.
GeometryGeometry Chord Lengths Section 6.3 Geometry Mrs. Spitz Spring 2005 Modified By Mr. Moss, Spring 2011.
LESSON 11.2 CHORDS AND ARCS OBJECTIVE: To use chords, arcs and central angles to solve problems To recognize properties of lines through the center of.
Section 10-2 Arcs and Central Angles. Theorem 10-4 In the same circle or in congruent circles, two minor arcs are congruent if and only if their corresponding.
Main Idea 1: If the arcs are congruent, then the chords are congruent. REVERSE: If the chords are congruent, then the arcs are congruent. Main Idea 2:
Circle Segments and Volume. Chords of Circles Theorem 1.
Chapter 10 Properties of Circles Mrs. Pullo February 29, 2016.
A B C D In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent. AB  CD if.
10.3 Apply Properties of Chords Hubarth Geometry.
10.2 Arcs and Chords Unit IIIC Day 3. Do Now How do we measure distance from a point to a line? The distance from a point to a line is the length of the.
12.2 Chords and Arcs.
1. DC Tell whether the segment is best described as a radius,
Tell whether the segment is best described as a radius,
10.3 – Apply Properties of Chords
Unit 3: Circles & Spheres
Do Now 1.) Explain the difference between a chord and a secant.
Section 10.4 Arcs and Chords.
TOPIC 12-2.
Chapter 10: Properties of Circles
Assignment 1: 10.3 WB Pg. 127 #1 – 14 all
Lesson 10-3 Arcs and Chords.
Lesson 8-4: Arcs and Chords
Geometry 11.4 Color Theory.
Chords, secants and tangents
10.3 Properties Chords Geometry Spring 2011.
1. DC Tell whether the segment is best described as a radius,
EXAMPLE 1 Use congruent chords to find an arc measure
Lesson 8-4: Arcs and Chords
Central angle Minor Arc Major Arc
Section 11 – 2 Chords & Arcs Objectives:
8-3 & 8-4 TANGENTS, ARCS & CHORDS
10.3 Warmup Find the value of x given that C is the center of the circle and that the circle has a diameter of 12. November 24, 2018 Geometry 10.3 Using.
Lesson 8-4 Arcs and Chords.
Week 1 Warm Up Add theorem 2.1 here next year.
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
EXAMPLE 1 Use congruent chords to find an arc measure
Lesson 8-4: Arcs and Chords
Geometry Section 10.1.
Notes 3.4 Perpendicular Lines.
Lesson 10-3: Arcs and Chords
Apply Properties of Chords
CHORD RULE #1.
CHORD RULE #1.
52.5° 4 Brain Buster 32° ° 36.5° 1 105° 16°
12.2 Chords & Arcs.
Tangents, Arcs, and Chords
Presentation transcript:

Geometry Section 10.3

Coins You notice that the word LIBERTY on the heads side of a quarter makes about the same arc as the words QUARTER DOLLAR on the tails side. Explain how you can use a straight ruler to check whether this is true.

EXAMPLE 1 Use congruent chords to find an arc measure In the diagram, P Q, FG JK , and mJK = 80o. Find mFG SOLUTION Because FG and JK are congruent chords in congruent circles, the corresponding minor arcs FG and JK are congruent. So, mFG = mJK = 80o.

EXAMPLE 2 Use perpendicular bisectors Three bushes are arranged in a garden as shown. Where should you place a sprinkler so that it is the same distance from each bush? Gardening SOLUTION STEP 1 Label the bushes A, B, and C, as shown. Draw segments AB and BC .

EXAMPLE 2 Use perpendicular bisectors STEP 2 Draw the perpendicular bisectors of AB and BC By Theorem 10.4, these are diameters of the circle containing A, B, and C. STEP 3 Find the point where these bisectors intersect. This is the center of the circle through A, B, and C, and so it is equidistant from each point.

EXAMPLE 3 Use a diameter Use the diagram of E to find the length of AC . Tell what theorem you use. SOLUTION Diameter BD is perpendicular to AC . So, by Theorem 10.5, BD bisects AC , and CF = AF. Therefore, AC = 2 AF = 2(7) = 14.

In the diagram of C, QR = ST = 16. Find CU. EXAMPLE 4 Use Theorem 10.6 In the diagram of C, QR = ST = 16. Find CU. SOLUTION Chords QR and ST are congruent, so by Theorem 10.6 they are equidistant from C. Therefore, CU = CV. CU = CV Use Theorem 10.6. 2x = 5x – 9 Substitute. x = 3 Solve for x. So, CU = 2x = 2(3) = 6.