TPAD controller performance for three force components.

Slides:



Advertisements
Similar presentations
Demonstrations I, II, and III.
Advertisements

Soft robotic device applied to the RV in a pressure overload model of RHF. Soft robotic device applied to the RV in a pressure overload model of RHF. (A.
Force limits and layout design.
Self-folding triangular devices at two scales.
Degradation of MSP samples in 37°C DPBS solution.
Comparison of predicted and measured forces and moments.
Demonstrations integrated system tests.
Technologies in the integrated gripper:
Basic design concept of human mimetic humanoid.
TPAD controller schematic and testing for WPC.
Cable-driven system diagram for structure matrix.
Deployment of the septal anchoring system.
Three different types of transfer functions with a codomain of [0,1].
TPAD training protocol.
System setup and results of a representative participant in a single training session. System setup and results of a representative participant in a single.
Force-strain characteristics of Peano-HASEL actuators using hydrogel and aluminum electrodes. Force-strain characteristics of Peano-HASEL actuators using.
Self-sensing of actuator position.
Examples of AEGIS autonomous target selection.
Workspace comparison of Delta robots.
Ex vivo testing of the soft robotic devices.
Soft robotic device applied to the left side in a coronary ligation HF model. Soft robotic device applied to the left side in a coronary ligation HF model.
Group data during free walking between sessions 1 and 16.
Distribution of the number of collisions and the average closest-neighbor distance as a function of communication range and delay. Distribution of the.
Visual explanation of the interaction terms.
Soft robotic VAD implementations, control schemes, and HF models.
Visual explanation of the interaction terms.
Power-free sterilization of culture plate.
AEGIS intelligent targeting compared with blind targeting.
Prosthesis grasping and control.
Comparison of repertoire distributions to baseline.
A novice user executing various subtasks from study 1.
Tukey boxplots overlaid on data points from objective and subjective measures, displaying results from study 1. Tukey boxplots overlaid on data points.
Soft robotic VAD implementations, control schemes, and HF models.
Tactile features for prosthesis perception.
Technologies in the integrated gripper:
Online verification using reachable occupancies.
Illustration of the addressable wireless folding concept.
Force limits and layout design.
Cell viability tests. Cell viability tests. SEM images of (A) MC3T3-E1 cells and (B) MSCs on days 1, 3, and 5 of culture. (C) Survival rates of MC3T3-E1.
Experimental characterization of the milliDelta’s quasi-static workspace (yellow) compared with the theoretical workspace (blue) generated by the kinematic.
Prosthesis system diagram.
Soft robotic device applied to the left side in a coronary ligation HF model. Soft robotic device applied to the left side in a coronary ligation HF model.
Microrobots with different cell-carrying capacities under different grid lengths (lg) and burr lengths (lb). Microrobots with different cell-carrying capacities.
Self-sensing of actuator position.
Brain-computer interfaces.
Details of an implementation of a mechanism within the control chambers for selective lengthening of the sides of the soft robot. Details of an implementation.
Untethered kirigami-skinned soft crawlers.
Force-strain characteristics of Peano-HASEL actuators using hydrogel and aluminum electrodes. Force-strain characteristics of Peano-HASEL actuators using.
Degradation of MSP samples in 37°C DPBS solution.
Schematic representation of MT sorting under a given electric field.
Soft robotic device applied to the RV in a pressure overload model of RHF. Soft robotic device applied to the RV in a pressure overload model of RHF. (A.
Steady-state performance of the soft robotic device in LHF models.
Underwater observatory.
Deployment of the septal anchoring system.
Simulation results of magnetic driving ability in hepatic artery, portal vein, and hepatic vein. Simulation results of magnetic driving ability in hepatic.
Comparison of predicted and measured forces and moments.
In vitro cell-release experiments on a glass substrate.
Overhead snapshots. Overhead snapshots. (A to E) Mark I3, robot experiments (movie S1). (F) Mark I3, simulation (movie S2, side by side with a run on the.
Results of a representative participant with multiple training sessions. Results of a representative participant with multiple training sessions. Average.
AEGIS autonomous targeting process.
Examples of AEGIS autonomous target selection.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Kinematic and mechanical advantage trade-off study.
Fig. 5. High burdens of AA signature mutations and predicted immunogenicity in Taiwan HCCs. High burdens of AA signature mutations and predicted immunogenicity.
The biomimetic pressure sensing ability.
Iron line orientation inside the PDMS matrix.
Floating microrobots with different preferred magnetization directions: Fabrication and control principles. Floating microrobots with different preferred.
Breakdown of incorrect participant responses.
Comparison of children’s behavior between the three conditions.
Setup used in the study. Setup used in the study. A child interacts with the robot tutor with a large touchscreen sitting between them, displaying the.
Presentation transcript:

TPAD controller performance for three force components. TPAD controller performance for three force components. (A) Fx in medial-lateral direction satisfies to be within ±1.5% BW. (B) Fy in anterior-posterior direction is within ±1.5% BW. (C) Fz in vertical direction is controlled to be at −10% BW. J. Kang et al. Sci. Robotics 2017;2:eaan2634 Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works