Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.

Slides:



Advertisements
Similar presentations
Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht,
Advertisements

Chondro-protective effects of low intensity pulsed ultrasound
Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads  Tatiana Gründer,
H. J. Pulkkinen, V. Tiitu, P. Valonen, J. S. Jurvelin, M. J. Lammi, I
Muscle cell-derived factors inhibit inflammatory stimuli-induced damage in hMSC- derived chondrocytes  R.S. Rainbow, H. Kwon, A.T. Foote, R.C. Preda, D.L.
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
Mesenchymal stromal cells for cartilage repair in osteoarthritis
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell- delivery vehicle  C.D. Hoemann, Ph.D., J. Sun, M.D., A. Légaré, M.Sc.,
H. Bretschneider, M. Stiehler, A. Hartmann, E. Boger, C. Osswald, J
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels  N.
A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair  M.B. Schmidt, Ph.D.,
Effect of glucosamine and its peptidyl-derivative on the production of extracellular matrix components by human primary chondrocytes  D. Stoppoloni, L.
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
S. E. Cisewski, L. Zhang, J. Kuo, G. J. Wright, Y. Wu, M. J. Kern, H
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro  L. Rackwitz, F. Djouad, S.
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-ß3 on cell recruitment and re-differentiation  U. Freymann, M. Endres,
Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation  A.
The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels  T. Hao, N. Wen, J.-K.
H.H. Lee, M.J. O'Malley, N.A. Friel, C.R. Chu 
Osmolarity effects on bovine articular chondrocytes during three-dimensional culture in alginate beads  X. Xu, J.P.G. Urban, U.K. Tirlapur, Z. Cui  Osteoarthritis.
Decreased proteoglycan degradation in IL-1β-treated cartilage co-cultured with TIMP-3- transduced cells  J. Mason, A. Donahue, A. Yoskowitz, D. Richardson 
Inhibition of cyclooxygenase-2 expression and prostaglandin E2 production in chondrocytes by avocado soybean unsaponifiables and epigallocatechin gallate 
R. Mhanna, E. Öztürk, P. Schlink, M. Zenobi-Wong 
Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked.
Enrichment of committed human nucleus pulposus cells expressing chondroitin sulfate proteoglycans under alginate encapsulation  Y. Sun, M. Lv, L. Zhou,
C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Y. Kodama, T. Furumatsu, M. Fujii, T. Hino 
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
Equivalence of a single dose (1200 mg) compared to a three-time a day dose (400 mg) of chondroitin 4&6 sulfate in patients with knee osteoarthritis. Results.
J.E. Jeon, K. Schrobback, D.W. Hutmacher, T.J. Klein 
Low calcium levels in serum-free media maintain chondrocyte phenotype in monolayer culture and reduce chondrocyte aggregation in suspension culture  A.
A predominantly articular cartilage-associated gene, SCRG1, is induced by glucocorticoid and stimulates chondrogenesis in vitro  Kensuke Ochi, M.D., Ph.D.,
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
J. Ranstam  Osteoarthritis and Cartilage 
Bisphosphonate rescues cartilage from trauma damage by promoting mechanical sensitivity and calcium signaling in chondrocytes  Y. Zhou, M. Park, L. Wang,
Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3D scaffolds  G. Feng, L. Li, H.
S.D. Waldman, J. Usprech, L.E. Flynn, A.A. Khan 
Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors.
Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFβ2 and FGF2  Y.M. Jenniskens, M.Sc., W. Koevoet, B.Sc., A.C.W. de.
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application  L. Wang, M.S., M. Lazebnik,
Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model  Carsten Lübke, Ph.D., Jochen Ringe, M.Sc., Veit.
Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins  M. Shimaya, T. Muneta, S. Ichinose, K. Tsuji,
Tissue engineering of cartilage using poly-ɛ-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells  M.E. Casper, J.S. Fitzsimmons, J.J.
M. Hufeland, M. Schünke, A.J. Grodzinsky, J. Imgenberg, B. Kurz 
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Synergistic effect of chondroitin sulfate and cyclic pressure on biochemical and morphological properties of chondrocytes from articular cartilage  G.
Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration  S. Ashraf, B.-H. Cha, J.-S. Kim, J. Ahn, I.
Development of growth factor tethered hyaluronan microspheres for in situ chondrogenic differentiation of human mesenchymal stem cells  S. Ansboro, J.S.
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Structure of pericellular matrix around agarose-embedded chondrocytes
Chondroitin sulfate modulation of matrix and inflammatory gene expression in IL-1β- stimulated chondrocytes – study in hypoxic alginate bead cultures 
Y. M. Bastiaansen-Jenniskens, M. Sc. , W. Koevoet, B. Sc. , A. C. W
Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress  Shuitsu Maeda, M.D., Jun Nishida,
A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage  Dr S.D. Waldman, Ph.D.,
Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile  A. Asanbaeva, Ph.D.,
Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro  C. Co, M.K.
Osteoarthritis year 2012 in review: biology
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
H. Stenhamre, M. Sc. , K. Slynarski, M. D. , Ph. D. , C. Petrén, T
M. Doherty, P. Dieppe  Osteoarthritis and Cartilage 
General Information Osteoarthritis and Cartilage
Presentation transcript:

Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis and Cartilage  Volume 17, Issue 10, Pages 1377-1384 (October 2009) DOI: 10.1016/j.joca.2009.04.012 Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Methacrylated alginate hydrogels after 4 weeks in vivo. Ionically (A) and photo-crosslinked (B) hydrogels. Arrows indicate location of the hydrogel. Osteoarthritis and Cartilage 2009 17, 1377-1384DOI: (10.1016/j.joca.2009.04.012) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Chondroitin sulfate proteoglycan immunohistochemistry of ionically and photo-crosslinked alginate hydrogels after 4 weeks of in vitro and in vivo culture. (A) Ionically crosslinked alginate hydrogel cultured in vitro, (B) photo-crosslinked alginate hydrogel cultured in vitro, and (C) photo-crosslinked alginate hydrogel in vivo. Scale bar=100mm. Osteoarthritis and Cartilage 2009 17, 1377-1384DOI: (10.1016/j.joca.2009.04.012) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Quantitative gene expression of types I (COL I) and II (COL II) collagen and aggrecan (AGG) normalized to GAPDH expression at 4 and 8 weeks post-implantation. * denotes a significant difference (P<0.05) between 4 and 8 weeks. Osteoarthritis and Cartilage 2009 17, 1377-1384DOI: (10.1016/j.joca.2009.04.012) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Total type II collagen (A) and sulfated GAG (B) accumulation normalized to the wet weight of the hydrogels at 4 and 8 weeks post-implantation. * denotes a significant difference between 4 and 8 weeks. Osteoarthritis and Cartilage 2009 17, 1377-1384DOI: (10.1016/j.joca.2009.04.012) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Immunohistochemistry of type II collagen (A, C) and chondroitin sulfate proteoglycan (B, D) ECM elaboration of photo-crosslinked alginate hydrogels at 4 (A, B) and 8 (C, D) weeks post-implantation. Scale bar=100μm. Osteoarthritis and Cartilage 2009 17, 1377-1384DOI: (10.1016/j.joca.2009.04.012) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Equilibrium Young's Modulus of photo-crosslinked alginate hydrogels cultured in vivo (A). Representative stereomicrographs of NP cell-encapsulated, photo-crosslinked alginate hydrogels pre-implantation (B), at 4 weeks post-implantation (C), and at 8 weeks post-implantation (D). Scale in mm. * denotes a significant difference (P<0.05) between cell-encapsulated and day 0 controls. Osteoarthritis and Cartilage 2009 17, 1377-1384DOI: (10.1016/j.joca.2009.04.012) Copyright © 2009 Osteoarthritis Research Society International Terms and Conditions