Volume 19, Issue 3, Pages (March 2012)

Slides:



Advertisements
Similar presentations
Volume 15, Issue 10, Pages (October 2008)
Advertisements

Volume 16, Issue 10, Pages (October 2009)
Volume 14, Issue 3, Pages (March 2007)
Volume 13, Issue 6, Pages (June 2006)
Katharina M. Hoyer, Christoph Mahlert, Mohamed A. Marahiel 
Volume 20, Issue 1, Pages (January 2013)
Volume 16, Issue 10, Pages (October 2009)
Biosynthesis of the Antitumor Agent Chartreusin Involves the Oxidative Rearrangement of an Anthracyclic Polyketide  Zhongli Xu, Kathrin Jakobi, Katrin.
Volume 20, Issue 10, Pages (October 2013)
Genomic Mining for Aspergillus Natural Products
Volume 15, Issue 2, Pages (February 2008)
Volume 17, Issue 4, Pages (April 2010)
Volume 17, Issue 4, Pages (April 2010)
Volume 20, Issue 6, Pages (June 2013)
Volume 13, Issue 4, Pages (April 2006)
Volume 17, Issue 2, Pages (February 2010)
Volume 20, Issue 8, Pages (August 2013)
Volume 15, Issue 9, Pages (September 2008)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin  Tiangang Liu, Xin Lin, Xiufen Zhou, Zixin.
Volume 20, Issue 8, Pages (August 2013)
Volume 17, Issue 10, Pages (October 2010)
Volume 19, Issue 2, Pages (February 2012)
Volume 14, Issue 5, Pages (May 2007)
Volume 10, Issue 5, Pages (May 2003)
Volume 14, Issue 1, Pages (January 2007)
Lessons from the Past and Charting the Future of Marine Natural Products Drug Discovery and Chemical Biology  William H. Gerwick, Bradley S. Moore  Chemistry.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Volume 15, Issue 10, Pages (October 2008)
Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides  Tobias W. Giessen, Alexander M.
Volume 14, Issue 2, Pages (February 2007)
Volume 12, Issue 12, Pages (December 2005)
Volume 18, Issue 5, Pages (May 2011)
Volume 7, Issue 11, Pages (November 2000)
Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin  Philip A. Storm, Dominik A. Herbst,
Volume 10, Issue 11, Pages (November 2003)
Benoit Villiers, Florian Hollfelder  Chemistry & Biology 
Volume 14, Issue 2, Pages (February 2007)
Volume 10, Issue 5, Pages (May 2003)
Enzymatic Extender Unit Generation for In Vitro Polyketide Synthase Reactions: Structural and Func-tional Showcasing of Streptomyces coelicolor MatB 
Volume 15, Issue 2, Pages (February 2008)
Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular.
Volume 7, Issue 10, Pages (October 2000)
Volume 20, Issue 6, Pages (June 2013)
Volume 16, Issue 10, Pages (October 2009)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 11, Issue 1, Pages (January 2004)
Volume 22, Issue 6, Pages (June 2015)
Volume 15, Issue 8, Pages (August 2008)
Engineered Biosynthesis of Geldanamycin Analogs for Hsp90 Inhibition
Gerald Lackner, Markus Bohnert, Jonas Wick, Dirk Hoffmeister 
Volume 11, Issue 3, Pages (March 2004)
Volume 12, Issue 2, Pages (February 2005)
Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase  Gong-Li.
Volume 10, Issue 4, Pages (April 2003)
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
A Family of Pyrazinone Natural Products from a Conserved Nonribosomal Peptide Synthetase in Staphylococcus aureus  Michael Zimmermann, Michael A. Fischbach 
Volume 7, Issue 2, Pages (February 2000)
Volume 7, Issue 2, Pages (February 2000)
Volume 14, Issue 3, Pages (March 2007)
Volume 13, Issue 7, Pages (July 2006)
Volume 12, Issue 3, Pages (March 2005)
Volume 11, Issue 1, Pages (January 2004)
Biosynthesis of the Antitumor Chromomycin A3 in Streptomyces griseus
Benoit Villiers, Florian Hollfelder  Chemistry & Biology 
Volume 12, Issue 3, Pages (March 2005)
Nonribosomal Biosynthesis of Fusaricidins by Paenibacillus polymyxa PKB1 Involves Direct Activation of a d-Amino Acid  Jingru Li, Susan E. Jensen  Chemistry.
A One-Pot Chemoenzymatic Synthesis for the Universal Precursor of Antidiabetes and Antiviral Bis-Indolylquinones  Patrick Schneider, Monika Weber, Karen.
Volume 13, Issue 3, Pages (March 2006)
Volume 22, Issue 6, Pages (June 2015)
Presentation transcript:

Volume 19, Issue 3, Pages 399-413 (March 2012) Elucidating the Biosynthetic Pathway for the Polyketide-Nonribosomal Peptide Collismycin A: Mechanism for Formation of the 2,2′-bipyridyl Ring  Ignacio Garcia, Natalia M. Vior, Alfredo F. Braña, Javier González-Sabin, Jürgen Rohr, Francisco Moris, Carmen Méndez, José A. Salas  Chemistry & Biology  Volume 19, Issue 3, Pages 399-413 (March 2012) DOI: 10.1016/j.chembiol.2012.01.014 Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 1 The Collismycin Gene Cluster (A) Chemical structure of collismycin A and (B) genetic organization of the collismycin gene cluster in Streptomyces spp. CS40. White arrows indicate genes that are not involved in collismycin biosynthesis. Black and gray arrows indicate genes involved in collismycin biosynthesis. Gray arrows indicate genes inactivated in CLMM1, CLMAH, and CLM12 mutants. cos3b11 and cos1c3 represent cosmids containing the sequenced region. Asterisk indicates the BamHI fragment used for generating mutant CLM12. BamHI sites are numbered. EV, EcoRV; N, NcoI; EI, EcoRI; P, PvuI; C, ClaI, restriction sites used for cloning purposes. Chemistry & Biology 2012 19, 399-413DOI: (10.1016/j.chembiol.2012.01.014) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 2 UPLC Analysis of Ethyl Acetate Extracts of Streptomyces spp. CS40and Mutant CLM12 (A) Streptomyces spp. CS40 and (B) mutant CLM12. The arrow indicates the UPLC mobility of collismycin A. Chemistry & Biology 2012 19, 399-413DOI: (10.1016/j.chembiol.2012.01.014) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 3 Sequence Alignments between Motifs of ClmN1 and ClmN2 with Conserved Motifs of Several PKS/NRPS Domains (A) ACP-PCP domains alignment. ACP-PCP (cons.) represents the consensus sequence for acyl and peptidyl carrier proteins. (B) KS domain alignment. KS (cons.) represents consensus sequence for ketosynthase domain. (C) AT domains alignment, where AT methylmalonylCoA indicates consensus sequence for propionate incorporation, and AT malonylCoA indicates consensus sequence for acetate incorporation. (D) Condensation/cyclization domain alignment. Cy (cons.) represents consensus sequences for condensation/cyclization domain. (E) Adenylation domain alignment. A Cys (cons.), A Gln (cons.), A Thr (cons.), and A (Leu (cons.) represents consensus Stachelhaus sequences for cysteine, glutamine, threonine, and leucine incorporation, respectively. (F) Condensation domain alignment. C (cons.) represents consensus sequence for condensation domain. Chemistry & Biology 2012 19, 399-413DOI: (10.1016/j.chembiol.2012.01.014) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 4 Scheme Showing the Multi-Enzymatic Hybrid PKS-NRPS Complex Formed by ClmP, ClmN1, and ClmN2 and the Hypothetical Reactions that It Catalyzes The question marks indicate that the enzymes catalyzing the reduction steps following malonyl-CoA incorporation have not been yet identified. Chemistry & Biology 2012 19, 399-413DOI: (10.1016/j.chembiol.2012.01.014) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 5 Isolation of Collismycin SC and Collismycin SN (A) UPLC chromatogram of extracts of mutant CLMAH and chemical structure of collismycin SC (col SC) and its absorption spectrum and mass analysis. For comparison, UPLC retention of collismycin A (col A) is indicated. (B) UPLC chromatogram of extracts of mutant CLMM1 and chemical structure of collismycin SN (col SN) and its absorption spectrum and mass analysis of collismycin SN (col SN). For comparison, UPLC retention of collismycin A (col A) is indicated. See also Tables S1 and S2. Chemistry & Biology 2012 19, 399-413DOI: (10.1016/j.chembiol.2012.01.014) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 6 Biotransformation Experiments with Collismycin SC and collismycin SN (A) Mutant CLM12 grown in the presence of collismycin SC (col SC). (B) Mutant CLM12 grown in the presence of collismycin SN (col SN). (C) Mutant CLMM1 grown in the presence of collismycin SC (col SC). (D) Mutant CLMAH grown in the presence of collismycin SN (col SN). Chemistry & Biology 2012 19, 399-413DOI: (10.1016/j.chembiol.2012.01.014) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 7 Proposed Pathway for the Biosynthesis of Collismycin A The different steps in collismycin A biosynthesis with putative assignations for the different enzymes are indicated. Chemistry & Biology 2012 19, 399-413DOI: (10.1016/j.chembiol.2012.01.014) Copyright © 2012 Elsevier Ltd Terms and Conditions