The MEG Detector to Search for m -> eg Decays

Slides:



Advertisements
Similar presentations
1 A.Baldini 23 sett CSN I Lecce Stato dellesperimento MEG Stato dellesperimento (LXe, T.C., Trigger a parte) Schedule Budget MoU Richieste finanziarie.
Advertisements

MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Status of the MEG Experiment W. Ootani ICEPP, University of Tokyo for the MEG collaboration.
LEPTON-FLAVOUR VIOLATION AND NEUTRINO OSCILLATIONS
27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Contents 1. MEG experiment 2. LXe Purification 3. Prototype Performance 4. Expected Performance 5. Toward the MEG experiment.
1 Satoshi Mihara for the   e  collaboration, muegamma review at PSI, Jan 2003 Photon Detector ICEPP, Univ. of Tokyo Satoshi Mihara.
Liquid Xenon Photon Detector Satoshi MIHARA ICEPP, Univ. of Tokyo
Liquid Xenon Carlorimetry at the MEG Experiment Satoshi MIHARA Univ. of Tokyo.
A. Baldini PSI July 04 General Introduction Work done in the past 4 months presented in the individual sub-detectors talks: highlights Construction is.
Shuei YAMADA, ICEPP, University of tau04 Nara, Sep. 15, Search for the Lepton Flavor Violating Decay  e  in the MEG Experiment Shuei YAMADA.
Genova/Pavia/Roma Flavio Gatti, PSI, July 1st, Timing Counter july 2004.
MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
Xenon Detector Status Liquid Xenon Detector Group.
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
Wataru Ootani, ICEPP, Univ. of Tokyo SORMA X, May 21, 2002 Development of liquid xenon scintillation detector for new experiment to search for   e 
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
Liquid Xenon Photon Detector Feb MEG Review Meeting Liquid Xenon Detector Part I CEX beam test at piE1 Oct-Dec/03 –Hardware operation status –Analysis.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
M. Grassi – INFN Pisa La Thuile - March 15 th, A sensitive search fordecay: the MEG experiment Marco Grassi INFN, Pisa on behalf of the MEG Collaboration.
19 April 2006Fabrizio Cei1 The Liquid Xenon Calorimeter of the MEG Experiment Fabrizio Cei INFN and Universita’ di Pisa Incontri di Fisica delle Alte Energie.
Status of the MEG Experiment  → e  On behalf of the MEG collaboration Stefan Ritt Paul Scherrer Institute, Switzerland.
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 Liquid Phase Purification Satoshi Mihara.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
Development of TOP counter for Super B factory K. Inami (Nagoya university) 2007/10/ th International Workshop on Ring Imaging Cherenkov Counters.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
Calibration and monitoring of the experiment using the Cockcroft-Walton accelerator G. Signorelli Sezione di Pisa MEG Review meeting - 20 Feb On.
The MEG Experiment T. Mori for the MEG Collaboration.
Current status of MEG Experiment Yasuko HISAMATSU ICEPP, The Univ. of Tokyo ICEPP Symposium.
Possible calibration methods for the final LXe calorimeter A. Papa 02/11/
Overview of the experiment Collaboration (about 30 physicists at this meeting) Budget Realistic schedule and general status (few words) of each sub-detector.
Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
A. Baldini PSI July 05 Overview of the experiment MEG is being built (Beam line, Magnet, LXe, DC, TC, Elect., Software) Delays in some items: O(months)
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
1 PMT Univ. of Tokyo Yasuko HISAMATSU ICEPP, MEG Collaboration meeting Feb. 10th, 2004.
1 PMT Univ. of Tokyo Yasuko HISAMATSU ICEPP, The University of Tokyo MEG VRVS meeting Jan. 20th, 2004.
g beam test of the Liquid Xe calorimeter for the MEG experiment
MEG  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
MEG Experiment Data Analysis: a status report
The MEG Experiment at PSI: a sensitive search for m eg decay
Search for lepton flavor violation: Latest results from the MEG experiment Gordon Lim.
The Electromagnetic calorimeter of the MEG Experiment
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
大強度
MEG Experiment at PSI R&D of Liquid Xenon Photon Detector
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
On behalf of the GECAM group
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
Stefan Ritt Paul Scherrer Institute, Switzerland
Liquid Xenon Scintillation Detector for the MEG Experiment
MEG II実験 液体キセノン検出器の建設状況
MEG Summary T. Mori for MEG Collaboration February 9, 2005.
COherent Muon to Electron Transition (COMET)
Trigger operation during 2007 run
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

The MEG Detector to Search for m -> eg Decays Toshiyuki Iwamoto ICEPP, University of Tokyo for the MEG Collaboration Aug 18, ICHEP 2004, Beijing

Contents Motivation & Event Signature MEG Experiment & Detector Beam Line COBRA Spectrometer Photon Detector 1. TERAS Beam test 2. p0 beam test in PSI   Summary Aug 18, ICHEP 2004, Beijing

Motivation & Event Signature Lepton flavor violating process Forbidden in the standard model Sensitive to the new physics such as SUSY-GUT, SUSY-seesaw etc. Our goal : Br(m->eg)>10-13~10-14 Present limit < 1.2x10-11(MEGA) Clear 2-body kinematics Ee = Eg = 52.8 MeV Back to back event Time correlation Only allowed after KamLAND Aug 18, ICHEP 2004, Beijing

MEG Experiment & Detector Approved in 1999, at Paul Scherrer Institut Physics run in 2006 Initial goal at 10-13, finally to 10-14 Drift Chamber COBRA m+ beam : World’s most Intensive DC Beam 108 m+ /s g detector : 800liter liquid xenon scintillation detector with 850 PMTs e+ detector : solenoidal magnetic spectrometer with a gradient magnetic field (COBRA) 252cm m+ 262cm Timing Counter Xe Detector Aug 18, ICHEP 2004, Beijing

The MEG Collaboration ICEPP, University of Tokyo Y. Hisamatsu, T. Iwamoto, T. Mashimo, S. Mihara, T. Mori, H. Nishiguchi, W. Ootani, K. Ozone, T. Saeki, R. Sawada, S. Yamada, S. Yamashita KEK, Tsukuba T. Haruyama, A. Maki, Y. Makida, A. Yamamoto, K. Yoshimura, K. Kasami Osaka University Y. Kuno Waseda University T. Doke, J. Kikuchi, S. Suzuki, K. Terasawa, A. Yamaguchi, T. Yoshimura INFN & Genova University S. Dussoni, F. Gatti, D. Pergolesi, R. Valle INFN & Lecce University S. Spagnolo, C. Chiri, P. Creti, M. Panareo, G. Palama’ INFN & Pavia University A.de Bari, P. Cattaneo, G. Cecchet, G. Nardo’, M. Rossella INFN & Pisa University A. Baldini, C. Bemporad, F.Cei, M.Grassi, F. Morsani, D. Nicolo’, R. Pazzi, F. Raffaelli, F. Sergiampietri, G. Signorelli INFN Roma I D. Zanello PSI, Villigen J. Egger, P. Kettle, M. Hildebrandt, S. Ritt Budker Institute, Novosibirsk L.M. Barkov, A.A. Grebenuk, D.G. Grigoriev, B, Khazin, N.M. Ryskulov Aug 18, ICHEP 2004, Beijing

Signal & Background Single event sensitivity Background Accidental : Nm~2.5x107/s, T=2.6x107s, W/4p =0.09, eg=0.6, ee=0.9 Sensitivity (m ->eg) ~ 4.5x10-14 (1st phase, capable to Nm~1x108/s) Background Accidental : Michel decay (μ+→e+νeνμ) + random γ Background Rate ~ 10-14 Radiative muon decays : μ+→e+νeνμγ   Background Rate < 10-14 Good energy, time and position resolutions are required for g, e+ detector. Expected detector resolution DEg : 4.5% (FWHM) DEe : 0.8% (FWHM) Dqeg : 18mrad (FWHM) Dt eg : 141ps (FWHM) Aug 18, ICHEP 2004, Beijing

Beam Line m+/e+ separator m+ target beam line MEG Detector 590MeV Beam Transport Solenoid m+/e+ separator m+ beam line target MEG Detector 590MeV proton Bending magnet Degrader Quadruple magnets Surface muon beam : 28MeV/c Beam line design established World’s most intensive m+ beam: 107~8/s Aug 18, ICHEP 2004, Beijing

COBRA Spectrometer COBRA magnet was already installed into the pE5 area in PSI. Constant bending radius independent of the emission angle e+ momentum easily used at trigger level Michel positrons are quickly swept out reduce the hit rate for stable operation Aug 18, ICHEP 2004, Beijing

Photon Detector 800 liter liquid xenon detector with 850 PMTs (PMTs directly filled into the liquid Xenon) High light yield, fast response and good uniformity Difficulties: 1. low temperature -> developed New PMT (Hamamatsu R9288) with special cathode treatment. use compact & powerful cryocooler (KEK) 2. Xe purity -> remove H2O(O2) down to ~10ppb level The strategy to develop Xe detector Small prototype ( 2.3 liter size ) confirmed the principle of Xe -> done Large prototype ( 68.6 liter size ) 1. TERAS beam test energy resolution of 10~40MeV g timing and vertex resolution 2. p0 beam test in PSI energy resolution of 53~129MeV g Aug 18, ICHEP 2004, Beijing

Large Prototype Detector Smaller acceptance Xe detector Active volume : 68.6little 228 2” PMTs To check performances and learn how to operate including LN2 free operation by cryocooler Aug 18, ICHEP 2004, Beijing

1. TERAS Beam Test Inverse compton g Energy : 10, 20, 40 MeV Incident position : detector center Estimate energy resolution using compton edge 40MeV g Energy 40MeV g Vertex distribution 1.6% in s 3.8mm in s Aug 18, ICHEP 2004, Beijing

2. p0 Beam Test at PSI p- (at rest) + p -> p0 + n, p0(28MeV) -> g + g (54.9MeV<Eg<82.9MeV) Almost monochromatic g is available by selecting opening angle. p- + p -> n + g (129MeV) linearity check using 55, 83 and 129MeV g neutron response 170°175° 54.9MeV 82.9MeV Opening angle(deg) Energy (MeV) 155 180 55 80 Aug 18, ICHEP 2004, Beijing

2. p0 Beam Test at PSI 8x8 NaI array opposite to Large Prototype Xe detector to know opening angle each NaI is 6.3x6.3x40.6cm3 Liquid H2 target Aug 18, ICHEP 2004, Beijing

Typical Event Sample To get Energy Resolution Select p0 events Select NaI energy Select incident position in Xe detector Remove too shallow and too deep events p-p->np0, p0->2g Number of p.e. in Xenon p-p->ng Energy of NaI (MeV) Number of p.e. in Xenon Aug 18, ICHEP 2004, Beijing

Energy Resolution 4.5% FWHM Energy resolution in right s(%) 5.0 4.0 preliminary 3.0 2.0 TERAS data PSI data 4.5% FWHM 1.0 Energy spectrum @ 54.9 MeV g This satisfies the requirement Right s is a good function of energy Aug 18, ICHEP 2004, Beijing

Summary MEG experiment will search for a rare muon decay, m->eg, to explore SUSY-GUT, and currently being prepared at Paul Scherrer Institut in Switzerland. COBRA magnet was installed into the pE5 area, and is ready to use. Large prototype of the xenon detector has been tested at around 52.8MeV, and the excellent energy resolution was shown in the PSI beam test. Physics run will start in 2006. Aug 18, ICHEP 2004, Beijing

End of Transparency Aug 18, ICHEP 2004, Beijing

How much water contamination? Simulated data Measured/MC Before purification: ~10 ppm After purification: ~10 ppb Aug 18, ICHEP 2004, Beijing

Absorption length estimation simulated data Measured / MC(abs=inf.) MC(abs=var.) / MC(abs=inf.) measured a data/simulated a data Comparing the two results, the absorption length is estimated to be over 3m (97.8% C.L.). Aug 18, ICHEP 2004, Beijing

PMT (HAMAMATSU R6041Q) Features 2.5-mmt quartz window Q.E.: 6% in LXe (TYP) (includes collection eff.) Collection eff.: 79% (TYP) 3-atm pressure proof Gain: 106 (900V supplied TYP) Metal Channel Dynode thin and compact TTS: 750 psec (TYP) Works stably within a fluctuation of 0.5 % at 165K 32 mm 57 mm Aug 18, ICHEP 2004, Beijing

Motivation Under high rate background, PMT output (old Type PMT, R6041Q) reduced by 10-20%. This output deterioration has a time constant (order of 10min.): Related to the characteristics of photocathode whose surface resistance increases at low temperature. Rb-Sc-Sb + Mn layer used in R6041Q Not easy to obtain “high” gain. Need more alkali for higher gain. Larger fraction of alkali changes the characteristic of PC at low temp. So, New Type PMTs, R9288 (TB series) were tested under high rate background environment. K-Sc-Sb + Al strip used in R9288 Al strip, instead of Mn layer, to fit with the dynode pattern Confirmed stable output. ( Reported in last BVR) But slight reduction of output in very high rate BG Add more Al Strip Al Strip Pattern Low surface resistance R9288 ZA series Aug 18, ICHEP 2004, Beijing Yasuko HISAMATSU MEG VRVS Meeting @PSI June 2004

Final! Works on Design of PMT Two Issues to be solved: Output deterioration caused by high rate background. (Effects of ambient temperature on Photocathode ) Ans. Reduce Surface Resistance by adding Aluminum Strip Pattern 2. Shortage of Bleeder Circuit Current Ans. Improve Design of the Circuit by adding Zener Diode Delivered from HPK in April Rate Dependence Test @ Liq.Xe HPK has started to work on new bleeder circuit design Yasuko HISAMATSU MEG VRVS Meeting @PSI June 2004 Aug 18, ICHEP 2004, Beijing

Large Power Pulse Tube Cryocooler Technology transfered to Iwatani Co., Ltd Designed: 150 W @165K Aug 18, ICHEP 2004, Beijing

Purification System Gas return To purifier Circulation pump Xenon extracted from the chamber is purified by passing through the getter. Purified xenon is returned to the chamber and liquefied again. Circulation speed 5-6cc/minute Enomoto Micro Pump MX-808ST-S 25 liter/m Teflon, SUS Gas return To purifier Circulation pump Aug 18, ICHEP 2004, Beijing