Creating Your Own Exponential Equation

Slides:



Advertisements
Similar presentations
Setting up Linear Equations; Applications January 23, 2007.
Advertisements

9-7 Linear, Quadratic, and Exponential Models
Linear, Exponential, and Quadratic Functions. Write an equation for the following sequences.
Exponential Functions
From week#2 discussion on exponential functions. Populations tend to growth exponentially not linearly When an object cools (e.g., a pot of soup on the.
Find the x-intercept, y-intercept and slope x-intercept = ____ y-intercept = ____ Slope = _____.
Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final Jeopardy Recursive Routines Exponential Equations Multiplying with Exponents.
Objective : Solving systems of linear equations by graphing System of linear equation two or more linear equations How do I solve linear systems of equations?
Introduction Verbal descriptions of mathematical patterns and situations can be represented using equations and expressions. A variable is a letter used.
Exploring Exponential Functions. Exponential Function The independent variable (x) is an exponent. f(x) = a b x “a” cannot be zero, “b” cannot be one.
A Library of Parent Functions. The Constant Parent Function Equation: f(x) = c Domain: (-∞,∞) Range: [c] Increasing: None Decreasing: None Constant: (-∞,∞)
Solving equations with polynomials – part 2. n² -7n -30 = 0 ( )( )n n 1 · 30 2 · 15 3 · 10 5 · n + 3 = 0 n – 10 = n = -3n = 10 =
4 minutes Warm-Up Simplify 1) 2) 3) 4).
CHAPTER 5 REVIEW. It has been snowing steadily in Flagstaff for a week. The amount of total inches it's snowed is as follows: 2 inches the first day,
1.Simplify: 2. Simplify: 3.Simplify: 4.Simplify: 5. Solve for x: Warmup
Pre-Algebra 12-6 Exponential Functions 12-6 Exponential Functions Pre-Algebra Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation.
1. Please pick up your Weekly Homework and Skill Builder. 2. Turn in SKILL BUILDER #30 and STRIKE A MATCH to the box. 3. Please be working on the first.
Simple and Compound Interest Unit 4 - Investing. Determining Simple Interest I = p * r * t Interest = Principle X Rate X Time ( in years)
9-7 Linear, Quadratic, and Exponential Models. Linear, Quadratic, & Exponential Review.
Bellwork Evaluate each expression Solve. for x = bacteria that double 1. every 30 minutes. Find the 2. number of bacteriaafter 3 hours
12.3 Geometric Series.
Writing Algebraic Expressions to Solve Word Problems.
Warm Ups Term 3 Week 9.
Writing equations in slope intercept form
1.) What is the value of c in the following equation?
Before we look at 7-2… A few more examples from 7-1.
Graphing review.
Pass up your homework and clear your desk for the QUIZ
Review Slides From week#2 discussion on exponential functions.
Module 13-2 Objectives Compare functions in different representations. Estimate and compare rates of change.
Lesson 3.5 Average Rate of Change (exponential functions)
هجرة الشباب الدولية والتنمية الفرص والتحديات
Test. Prank you.
COMPARING EXPONENTIAL AND LINEAR FUNCTIONS
Warm Up Find a partner at your table.
Name Learning Objective
We can use an equation, graph or table
Warm Up Find a partner at your table.
MATH 1311 Section 4.3.
MATH 1311 Section 4.3.
Day 19 Unit 1 review.
Warm Up Find a partner at your table.
Sequences.
Long Division and Synthetic Division
Factoring Using Special Patterns General Algebra II
Beth begins with $10 in the bank and
Day 18 - Solving simple systems
E-5.6: Homework E-5.8: Homework
E-5. 3: General Form of the Exponential Function E-5
Sequences.
Learning Targets Students will be able to: Compare linear, quadratic, and exponential models and given a set of data, decide which type of function models.

form the ordered pair solution
Relations & Functions.
Unit 6: Exponential Functions
Objectives Compare linear, quadratic, and exponential models.
MONDAY TUESDAY WEDNESDAY
Solving f(x) = g(x) Algebraically
Exponential Functions & Compound Interest
Doubling Time and Half-Life
1. add 2. triple 3. decrease 4. prove Tie to LO
6.1 Solving Linear Systems by Graphing
A biologist measures the temperature of a lake each week during the summer. This table shows seven weeks of measurements. Which equation can be used.
5 Minute Check 1-4 Graph the equation : 2x + y – 4 = 0
Arithmetic, geometric, or neither
In this lesson, you will learn to write an exponential growth function modeling a percent of increase situation by interpreting the percent of increase.
Algebra 1 Warm Ups 1/22.
Exponential Growth and Decay
Objectives Recognize and extend an arithmetic sequence.
Presentation transcript:

Creating Your Own Exponential Equation Based on Data Provided

General Form for an Exponential Equation f(x) = P(r)n y = P(r)n A = P(r)n P: Beginning amount (amount when time is zero) r: ratio of one term to the next. In order to find r, divide any term by its preceding term n: time – number of years, days, weeks, minutes, etc depending on wording of the original problem

Exponential Example: The Impractical Jokers set up a prank in Times Square. The chart below shows the number of people watching the prank after a certain amount of time Set up an equation for the equation expressing number of people watching the prank after “n” minutes. How many people will be watching the prank after 8 minutes? Minutes (n) 1 2 3 # of People Watching 9 27

General Form for an Linear Equation f(x) = dx + b y = dx + b A = dx + b d: difference between any consecutive terms b: value of the “zero” term x: number of term you are interested in

Linear Example: The chart below represents the amount of money (A) in Laura’s savings account “m” months after starting her new job Set up an equation for the equation expressing the amount of money (A) in Laura’s bank account after “m” months How much money will be in Laura’s savings account in one year? Months (m) 1 2 3 Amount of $$ in Savings Account $250 $500 $750