A p r o x i m a t n l g h s f e - u c D i s c r e t A p l d M a h m 1

Slides:



Advertisements
Similar presentations
Minimization of AND-OR-EXOR Three Level Networks with AND gate Sharing Hasnain Heickal (SH-223)
Advertisements

Minimum Spanning Tree Sarah Brubaker Tuesday 4/22/8.
Private Approximation of Search Problems Amos Beimel Paz Carmi Kobbi Nissim Enav Weinreb Ben Gurion University Research partially Supported by the Frankel.
Department of Computer Science & Engineering
Approximating the two-source minimum routing cost spanning trees Bang Ye Wu Shu-Te University.
Fig. 16-CO, p Fig. 16-1, p. 450 Fig. 16-2, p. 450.
1 Minimum-energy broadcasting in multi-hop wireless networks using a single broadcast tree Department of Computer Science and Information Engineering National.
Minimum Spanning Trees Definition Algorithms –Prim –Kruskal Proofs of correctness.
What is the next line of the proof? a). Let G be a graph with k vertices. b). Assume the theorem holds for all graphs with k+1 vertices. c). Let G be a.
The Theory of NP-Completeness
DAST 2005 Tirgul 14 (and more) sample questions. DAST 2005 (reminder?) Kruskal’s MST Algorithm.
Is the following graph Hamiltonian- connected from vertex v? a). Yes b). No c). I have absolutely no idea v.
Introduction Outline The Problem Domain Network Design Spanning Trees Steiner Trees Triangulation Technique Spanners Spanners Application Simple Greedy.
Constant Factor Approximation of Vertex Cuts in Planar Graphs Eyal Amir, Robert Krauthgamer, Satish Rao Presented by Elif Kolotoglu.
Minimum Spanning Trees. Subgraph A graph G is a subgraph of graph H if –The vertices of G are a subset of the vertices of H, and –The edges of G are a.
Outline Introduction The hardness result The approximation algorithm.
Functional Dependencies Prof. Yin-Fu Huang CSIE, NYUST Chapter 11.
Primal-Dual Meets Local Search: Approximating MST’s with Non-uniform Degree Bounds Author: Jochen Könemann R. Ravi From CMU CS 3150 Presentation by Dan.
APPROXIMATION ALGORITHMS VERTEX COVER – MAX CUT PROBLEMS
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Sets.
Chapter 4 sections 1 and 2.  Fig. 1  Not connected  All vertices are even.  Fig. 2  Connected  All vertices are even.
Minimum Routing Cost Spanning Trees Kun-Mao Chao ( 趙坤茂 ) Department of Computer Science and Information Engineering National Taiwan University, Taiwan.
Constructing evolutionary trees from rooted triples Bang Ye Wu Dept. of Computer Science and Information Engineering Shu-Te University.
CSC 172 P, NP, Etc. “Computer Science is a science of abstraction – creating the right model for thinking about a problem and devising the appropriate.
Nonoverlap of the Star Unfolding Boris Aronov and Joseph O’Rourke, 1991 A Summary by Brendan Lucier, 2004.
1 The Steiner problem with edge length 1 and 2 Author: Marshall Bern and PaulPlassmann Reporter: Chih-Ying Lin ( 林知瑩 ) Source: Information Process Letter.
1 Approximate Algorithms (chap. 35) Motivation: –Many problems are NP-complete, so unlikely find efficient algorithms –Three ways to get around: If input.
5.5.2 M inimum spanning trees  Definition 24: A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible.
The full Steiner tree problem Theoretical Computer Science 306 (2003) C. L. Lu, C. Y. Tang, R. C. T. Lee Reporter: Cheng-Chung Li 2004/06/28.
Lecture 19 Minimal Spanning Trees CSCI – 1900 Mathematics for Computer Science Fall 2014 Bill Pine.
Steiner Tree Problem Given: A set S of points in the plane = terminals
A linear-time algorithm to compute a MAD tree of an interval graph Elias Dahlhaus, Peter Dankelmann, R.Ravi.
Trees Kun-Mao Chao ( 趙坤茂 ) Department of Computer Science and Information Engineering National Taiwan University, Taiwan
The geometric GMST problem with grid clustering Presented by 楊劭文, 游岳齊, 吳郁君, 林信仲, 萬高維 Department of Computer Science and Information Engineering, National.
南亚和印度.
1 Minimum Routing Cost Tree Definition –For two nodes u and v on a tree, there is a path between them. –The sum of all edge weights on this path is called.
P & NP.
Introduction to Approximation Algorithms
Algorithm Analysis Fall 2017 CS 4306/03
Approximation Algorithms
Approximate Algorithms (chap. 35)
Aim: Full House Grid: 9 Grid Play: Calculate answer & cross it off
CS4234 Optimiz(s)ation Algorithms
Lecture 12 Algorithm Analysis
Approximation Algorithms
2. Definition of congruent segments AB = CD 2.
تصنيف التفاعلات الكيميائية
Approximation Algorithms for TSP
ICS 353: Design and Analysis of Algorithms
Constrained Bipartite Vertex Cover: The Easy Kernel is Essentially Tight Bart M. P. Jansen June 4th, WORKER 2015, Nordfjordeid, Norway.
Minimum Spanning Trees
Shortest-Paths Trees Kun-Mao Chao (趙坤茂)
Chapter 9: Graphs Basic Concepts
CS 583 Analysis of Algorithms
CS 581 Tandy Warnow.
Lecture 11 Overview Self-Reducibility.
Lecture 12 Algorithm Analysis
Minimum Spanning Trees
Distributed Application Partitioning
Introduction to Algorithms: Greedy Algorithms (and Graphs)
Minimum Spanning Trees
CSE 589 Applied Algorithms Spring 1999
Lecture 12 Algorithm Analysis
Kruskal’s Algorithm AQR.
Trees Kun-Mao Chao (趙坤茂)
The Complexity of Approximation
Chapter 9: Graphs Basic Concepts
Trees Kun-Mao Chao (趙坤茂)
Locality In Distributed Graph Algorithms
Minimum Spanning Trees
Presentation transcript:

A p r o x i m a t n l g h s f e - u c D i s c r e t A p l d M a h m 1 4 3 ( 2 ) - B n g Y W u If you can not see some characters, please install TEX4PPT for the url. http://www.ecs.soton.ac.uk/~srg/softwaretools/presentation/TeX4PPT/ If the problem exists, please install a full MikTex software. S p e a k r : C h n g - u L i 2 4 / 1 9

Outline F I n t r o d u c i P e l m a s T h N - A p x g O C 2 k 77

Outline F I n t r o d u c i P e l m a s T h N - A p x g O C 2 k 77

Introduction C o n s i d e r t h f l w g p m a c u O T b : L G = ( V ; ) v . W q ¸ , F y ¯ 77

So … O u r g o a l i s t c n p e w h m . T , ¯ d X ¸ ( ) z W b v 2 V ; 77

Some special cases of the problem-1 q u i m n t s O C p o b l a - y g v . B c , f d F ¸ ( ; ) = 1 2 V M R N P 77

Some special cases of the problem-2 ¸ ( u ; v ) = r f o e a c h 2 V , w i s g n t x . T p b l m d - q P R O C + S 77

Examples for OCT, MRCT 1 1.4 A B T1 T2 C D Vertices Requirements A,B 3(1) A,C 1(1) A,D 4(1) B,C B,D 5(1) C,D 9(1) 3*1+1*1+4*2+ 1*2+5*3+9*1 =38 3*1+1*2.4+4*1.4+ 1*3.4+5*2.4+9*1 =35.4 1*1+1*2.4+1*1.4+ 1*3.4+1*2.4+1*1 =11.8 1*1+1*1+1*2+ 1*2+1*3+1*1 =10 77

Examples for PROCT, SROCT 1 1.4 A B T1 T2 C D 3*1+12*1+3*2+ 4*2+1*3+4*1 =60 3*1+12*2.4+3*1.4+ 4*3.4+1*2.4+4*1 =56 Vertx weight PROCT SROCT A 3 A,B 4 B 1 A,C 12 7 C A,D D B,C 5 B,D 2 C,D 4*1+7*1+4*2+ 5*2+2*3+5*1 =40 4*1+7*2.4+4*1.4+ 5*3.4+2*2.4+5*1 =53.2 77

Any questions or mistakes ? 1 . I s ¸ ( u ; v ) = ? 2 f w e h a c o n t d £ T , l b W j p + r q i - m g y B ® 77

p - s o u r c e M R C T b l m 1 I n t h e g i v p - s o u r c M R C T ( ) b l m , w a d . W f z S O x ¸ ; = ½ 1 2 H V 77

p - s o u r c e M R C T b l m 2 F I t s r i v a l h 1 - M R C T n d O y m b . H w , 2 N P f c g A q u 77

In this paper … W e i n v s t g a o p m l - u r c ( O C T ) b . L G = , E w h f X 2 S ¸ ; d z M R 77

In this paper… I n t h i s p a e r , w o N P - d f M R C T b l m v c g y ¯ x ¸ 2 . O u W F 3 77

The relationships between OCT problems Optimal Communication spanning tree more general PROCT SROCT p-source OCT, fixed p 2-source OCT p-source MRCT, arbitrary p MRCT p-source MRCT, fixed p 2-source MRCT 77

Outline F I n t r o d u c i P e l m a s T h N - A p x g O C 2 k 77

Some Definitions-1 F o r a n y g p h G = ( V , E w ) d e t s i v x . L b l f u c H ¯ P W j m D 1 ; 2 S T 77

Some Definitions-2 D e ¯ n i t o 2 . L H b a s u g r p h f G F v x V ( ) , w d ; c m = T l E y M ½ A O j + 77

Some Definitions-3 D e ¯ n i t o 3 . L T b a s p g r f h G d S = ; , V 1 ; 2 , V ( ) v u c F y x m P w q 4 - l O C 77

Outline F I n t r o d u c i P e l m a s T h N - A p x g O C 2 k 77

T h e c o m p u t a i n l x y f - O C r b I n t h i s e c o , w d ¯ a g v r f 2 - M R C T p b l m . B y k N P x O u p-OCT SAT 2-MRCT() p-MRCT 77

Some Definitions F L e t U = f u ; : g b a s o B l v r i - X c h m , d 1 ; 2 : n g b a s o B l v r i - X c h m , d y ¯ . A ® x ( _ ¹ 3 5 ) | { z } ^ 7 9 4 ¡ T j 77

Some Definitions D e ¯ n i t o 5 . G v a s U f r b l d X c u , h S A T Y ( ) p m g y - 6 = V E w 1 2 ® ¸ M R C ; P + 77

Start to transform … W e s h a l t r n f o m S A T p b 2 - M R C ( ® ) . G i v U = u 1 ; : g B d X x c , w V E F L ¹ j · [ y < + 3 8 ¡ 77

T h e t r a n s f o m i S A p b l 2 - M R C ( ® ) ¹ a ¹ a ¹ a ¹ a ¹ a ai ai+1 an E2 E1 E3 s1 … … s2 ¹ a 1 ¹ a 2 ¹ a 3 ¹ a i ¹ a i + 1 ¹ a n A b1,b2,b3,…bm B T h e t r a n s f o m i S A p b l 2 - M R C ( ® ) 77

The goal… W e s h a l o w t S A T p r b m i f y n g u ® G c d ( ; ) · ¯ , = + 1 2 4 L 77

T h e R d u c t i o n ) P r o p s i t n 1 . I f h e a u g m y X , x Y ( ; ® ) = ¯ W d l w F T b v 2 : · ¹ ¡ O S 77

Example: ( u _ ¹ ) ^ a ¹ s1 s2 a1 a5 a3 a4 a2 b1 b2 b3 b4 1 3 5 2 4 1 77

( u _ ¹ ) ^ t : f T , F g a ¹ s1 s2 a1 a5 a3 a4 a2 b1 b2 b3 b4 Y 1 3 5 77

Start to compute… F o r a n y v 2 f ; ¹ g , s t h e p P d ( ) = + ¡ w i ; ¹ g , s t h e p P Y d ( 1 ) = + ¡ w 3 . b c m j l u ® L N x 77

T h e R d u c t i o n ) T h e r o u t i n g c s f Y v b y ( ; ® ) = + 1 d 2 X A · 4 ¡ m L ¯ 77

T h e R d u c t i o n ( P r o p s i t n 2 . L e T b a m l u f - M R C ® ) G I c ; · ¯ , h 1 v : w ¹ g F S d > ¡ y x A + ¸ B = 4 77

If PT contains b2 ¹ a ¹ a ¹ a ¹ a ¹ a a1 a2 a3 a4 a5 s1 s2 b1 b2 b3 b4 77

T h e R d u c t i o n ( ¹ a ¹ a ¹ a ¹ a F S u p o s e t h a P c n i m Y c n i m r v A . I l d T ( 1 ; 2 ) > + x b ¹ ai ai+1 ai ai+1 ¹ a i ¹ a i + 1 ¹ a i ¹ a i + 1 W e m a y o b t i n d h r s p g c l T f + 1 ¹ v x . 77

T h e R d u c t i o n ( P r o p s i t n 3 . L e T b a m l u f 2 = M R ® ) G I c ; · ¯ , h g y X B d ¹ 1 + ¡ F Y v V ¸ w 77

F o r a n y b , p f P s t 1 ® d ( ; ) + ¸ L . h e l w u c m v x C q X i , p f P s t 1 ® d T ( ; ) + 2 ¸ L . h e l w u c m v x C q X = ¡ 3 4 ¯ B I g R U E 77

Conclusion of The Reduction m 1 . F a n y f i x d t g ® ¸ , 2 - M R C ( ) p b l s N P B 3 77

The 2-MRCT() problem is NP-hard even for metric graphs y 2 . F n ¯ x e d i t g ® ¸ 1 , h - M R T ( ) p b m s N P v f c L G u ¹ = V ; £ w 3 77

We can easily transform the 2-MRCT() problem to the p-MRCT zero edge s1 s2 p copies of s1 C o r l a y 3 . F n ¯ x e d i t g p ¸ 1 , h - M R T s N P v f m c u 77

Finally, p-OCT is NP-hard e t h O C T p r o b l m u d s M R a , : y 4 . F ¯ x g ¸ 1 - N P v f 77

Outline F I n t r o d u c i P e l m a s T h N - A p x g O C 2 k 77

S i m p l e c a s : 2 - O C T w t h r n u N o t e h a m r i c g p s l f w d b n y v - . T x 2 O C , u ( 1 ; ) 77

Algorithm A1 A l g o r i t h m 1 I n p u : e c a G , w s d q ( v ) f x 2 d q ( v ) f x V . O T y ; F / * C + · 77

Algorithm A1 s2 s1 77

The important definition ¯ n i t o 7 . L Y b h 2 - O C T a d P p w s 1 W f ( v ) = ; ¡ r c x m 5 V + B y , u l q 77

The ratio and running time of A1 6 . A l g i t 1 c p u s a 2 - x n f O C ( ) P H w d y U j , k b v W L Y B q ; · = + 77

The ratio and running time of A1 cont. W e h a v ( r 1 ) + 2 w ; s · d Y P f = c 77

T h a t i s , f v c o n e d 1 - r m 2 ( ) . S l y x b g u w · Y + ; 77

S i n c e t h m u o f w b r s a g d , v ( ) + 2 ; · = £ : ¡ ¸ y l 5 W 1 ; · = £ : ¡ ¸ T y l 5 W x . - P V p 77

What we know from A1 ? T h e a b o v l g r i t m s ¯ u d c - k n , y x . 77

The reduced skeleton of a tree ¯ n i t o 8 . L T b a s p g r f m c h G d S ½ V ( ) u - k l Y y ; v 2 P X = E w : F , x 77

u1 u2 Y, assume Y=Fig3.(a) 77

u2 u1 The skeleton of Fig 3.(a) 77

The reduced skeleton of Fig 3.(a) X u1 u2 The reduced skeleton of Fig 3.(a) 77

What we will do ? O u r a l g o i t h m e s d c S - k n X f C T , v x b y p . B w ? I 2 j ¡ = ( ) 77

The important Lemma L e m a 7 . t X b h r d u c S - s k l o n f T F y ; v 2 V ( ) , · j ¡ P B ¯ i p w G g C q 77

P r o f . C n t L e a d b h u m l v s i c , p y T · j S ( ¡ ) w X g + 1 a d 2 b h u m l v s i c , p y T · j S ( ¡ ) w X g + 3 | { z } ; 77

A p r o x i m a t n g h e - O C T A l g o r i t h m 2 I n p u : e c a = ( V ; E w ) , s S ½ f d q v . O T F 1 - X x [ y / * C P + ¤ z k b 77

T h e r u n i g t m a d o f A l 2 T h e o r m 8 . F a t i c g p , A l s - x u O C ( ¡ 1 ) w ¸ P X v b ¢ £ 4 V k ¤ ; S 77

L e t Y b h o p i m a l s u n d ¹ X r c S - k f . B y 7 , j V ( ) · 2 ¡ F w x < g A = ± 77

S o m e d ¯ n i t s : L ( u ; ) X a P = . R v g h f r , c l - p b y B 1 ; 2 ) X a P = Y . R v g h f r , c l - p b y B V [ A k T E x 77

B(u1,u2) u2 Y2 u1 Y Y1 77

The goal of our proof S i n c e d ( u ; v ) = f o r a y 2 V X b L m 7 , w h . W s l p t 1 E x B · - 77

Let S1 and S2 as “Big” sources F o r v 2 V , l e t R 1 = P s i S ( ) a n d . A h p u b c w ¯ f Y ; ¡ x X y m k g T · + 77

S i n c e w ( v ; u ) · d P + f a , R . B y ¯ t o h s b m p l : = r q 1 ) · d Y P + f a 2 , R . B y ¯ t o h s b m p l : = r T q k g - x 77

End of the proof F i n a l y , w e s h o t p r x m f c j V ( ¹ X ) < 2 ¡ . T u d E ½ v z I = 77

Outline F I n t r o d u c i P e l m a s T h N - A p x g O C 2 k 77

The spirit of Algorithm A3 u r a p o x i m t n l g h c s ¯ d e b w - f v . T s1 s2 77

Algorithm A3 I n p u t : A g r a h G = ( V ; E w ) , o s c e d q i m v 1 2 d q i m v O T f . F X b l L 77

The ratio of the Algorithm A3 9 . t Y b h 2 - O C T F o r n y v x , c ( ) · 3 : P f S u p s i d X B ; = G 1 w + l ¯ dG…代表在G上的最短距離 77

The result of Algorithm A3 1 . a l g i t A 3 c p u s - x n f 2 O C G = ( V ; E w ) j + y b d P B L 9 , v · Y ¯ F H 77

Outline F I n t r o d u c i P e l m a s T h N - A p x g O C 2 k 77

Concluding remarks I t w o u l d b e i n r s g ¯ ± c a h m p x - O C T . A v f , y ® 77

The Important key notes: 1 . T h e r d u c S - s k l t o n f a 2 i m p q 77

About the author… 吳邦一 Associate Professor, Dept. Information Engineering & Computer Science, Shu-Te University. 77

More … P r o b l e m R s t i c n a O C T N g v ( ) ¸ u ; = A S + 2 M 1 - , f p j h 3 77

More and More… You can see the book written by Bang Ye Wu and Kun-Mao Chao 77

77