EOCT Review Unit 5 – Transformations in the Plane

Slides:



Advertisements
Similar presentations
MOTION IN GEOMETRY: TRANSFORMATIONS
Advertisements

This presentation is the intellectual property of Christine Markstrum Chapter 7 Transformations.
Rotations California Standards for Geometry
1.6 Motion in Geometry Objective
Math 310 Sections Isometry. Transformations Def A transformation is a map from the plane to itself that takes each point in the plane to exactly.
Geometry: Dilations. We have already discussed translations, reflections and rotations. Each of these transformations is an isometry, which means.
Chapter 9.1 Common Core G.CO.2, G.CO.4, & G.CO.6 – Represent transformations in the plane…describe transformations as functions that take points in the.
MATH – High School Common Core Vs Kansas Standards.
Coordinate Geometry Mrs. Keating Keystone Geometry.
Quadrilaterals in the Coordinate Plane I can find the slope and distance between two points I can use the properties of quadrilaterals to prove that a.
Geometry Ch 12 Review Jeopardy Definitions Name the transformation Transform it!Potpourri Q $200 Q $400 Q $600 Q $800 Q $1000 Q $200 Q $400 Q $600 Q $800.
Answer please?.
MondayTuesdayWednesdayThursdayFriday 3 Benchmark – Practice Questions from Unit 1 – 3 and a chance to earn Bonus (Skills Check category) 4 Review Unit.
Geometry: Similar Triangles. MA.912.G.2.6 Use coordinate geometry to prove properties of congruent, regular and similar polygons, and to perform transformations.
Sections By: Emily and Becca. 1.4 Geometry using Paper Folding Perpendicular Lines- Two lines that intersect to form a right angle. Parallel.
Chapter 7 Transformations. Examples of symmetry Lines of Symmetry.
G.CO.1 Know precise definitions of angle, circle, perpendicular lines, parallel lines, and line segment, based on the undefined notions of point, line,
9.1 Translations -Transformation: a change in the position, shape, or size of a geometric figure -Preimage: the original figure -Image: the resulting figure.
1.2: Transformations G-CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given.
Rigid Motions: Translations Reflections Rotations Similarity Transformations: ( ) & Dilations Opener Describe a sequence of similarity transformations.
7.2 Reflections Geometry.
1.2: Transformations CCSS
1.4 Rigid Motion in a plane Warm Up
Number of Instructional Days: 13.  Standards: Congruence G-CO  Experiment with transformations in the plane  G-CO.2Represent transformations in the.
WAM “Writing About Math”
Unit 5 – Transformations in the Plane Unit 6 – Connecting Algebra with Geometry.
Activation—Unit 5 Day 1 August 5 th, 2013 Draw a coordinate plane and answer the following: 1. What are the new coordinates if (2,2) moves right 3 units?
1 Objectives Define transformations and isometry Identify and draw translations Identify and draw reflections.
Test Review Answers: DEFINITIONS (Level 3). If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is a ___________.
What is a rigid transformation?  A transformation that does not change the size or shape of a figure.
Reflections Geometry.
Complete the following definitions
7.2 Reflections Geometry Ms Bateman 2010.
Introduction to Geometry – Transformations and Constructions
Continuation of MVP 8.3 PROVE IT!
Y. Davis Geometry Notes Chapter 9.
Section 9-1 Reflections.
EOCT Review Unit 5 – Transformations in the Plane
Pearson Unit 2 Topic 8: Transformational Geometry 8-2: Reflections Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Reflections & Rotations
9.1 Translations -Transformation: a change in the position, shape, or size of a geometric figure -Preimage: the original figure -Image: the resulting figure.
Geometry: Unit 1: Transformations
EOCT Review Unit 5 – Transformations in the Plane
True or False: A transformation is an operation that maps a an image onto a pre-image. Problem of the Day.
Mod 16.1: Dilations Essential Question: What can you say about the interior and exterior angles of a triangle and other polygons? CASS: G-SRT.1a, G-SRT.2b.
Geometry A Final Review
7.1 Rigid Motion in a Plane OBJECTIVES:
9.1: Reflections.
Geometry PreAP, Revised ©2013 1–7 and 12–1: Transformations
Proving simple Geometric Properties by using coordinates of shapes
True or False: Given A(-4, 8), the image after a translation of (x – 7, y + 6) is A’(-11, 14). Problem of the Day.
These are flips, slides, turns, and enlargements/reductions.
12-1 Reflections Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
WARM UP.
EOCT Review Unit 5 – Transformations in the Plane
Unit 1Review
Transformations Lesson 13.1.
Essential Question: What can I add to the words slide, flip and turn to more precisely define the rigid-motion transformations – translation, reflection.
Congruence Transformations
Y. Davis Geometry Notes Chapter 4.
Objective Identify and draw reflections..
Reflections Geometry.
Unit 5: Geometric and Algebraic Connections
Transformations Maria Garcia.
9.2 Reflections By Brit Caswell.
Maintenance Sheet 24 due Friday
Warm Up January 27 Student 1 Quiz Scores:70, 85, 89, 78, 84, 75, 95
9-3 Rotations.
Unit 5 Geometric and Algebraic Connections
Presentation transcript:

EOCT Review Unit 5 – Transformations in the Plane Unit 6 – Connecting Algebra with Geometry

Key Ideas Precise definitions: Angle Circle Perpendicular lines Parallel lines Line Segment

Unit 5 - Transformations Represent transformations in the plane Compare rigid and non-rigid Translations Rotations Reflections Understand Dilations

Key Ideas Given shapes – Determine which sequence of rotations and reflections would map it on itself Develop definitions of rotations, reflections and translations

Translations A translation maps every two points P and Q to points P' and Q' so that the following properties are true: ● PP' = QQ' ● PP' QQ'

Reflections A reflection across a line m maps every point R to R' so that the following properties are true: ● If R is not on m, then m is the perpendicular bisector of RR' . ● If R is on m, then R and R' are the same point.

Rotations A rotation of x° about a point Q maps every point S to S' so that the following properties are true: ● SQ = S' Q and m<SQS' = x° . ● Preimage point Q and image point Q' are the same. Note: QS and QS' are radii of a circle with center Q.

Examples Use the translation (x, y) → (x – 3, y + 1).

Examples Describe every transformation that maps the given figure to itself.

Unit 6 – Connecting Algebra and Geometry Use coordinates to prove simple geometric theorems algebraically. Circle centers Parallelograms Rectangles Squares and Rhombii

Geometric Problems y=mx+b Prove lines parallel or perpendicular The slope of the line through points (x1, y1) and (x2 , y2 ) is Find the equation of a line through a given point y=mx+b

Distance Formula

Exterior Angle Theorem m<1= m<2+m<3

Key Ideas Partition a directed segment into a given ratio.

Review Examples See Study Guide Handout