Translational Perspectives for Computational Neuroimaging

Slides:



Advertisements
Similar presentations
Bayesian models for fMRI data
Advertisements

Computational and physiological models Part 2 Daniel Renz Computational Psychiatry Seminar: Computational Neuropharmacology 14 March, 2014.
Dynamic Causal Model for evoked responses in MEG/EEG Rosalyn Moran.
Mihály Bányai, Vaibhav Diwadkar and Péter Érdi
Dynamic Causal Modeling of Endogenous Fluctuations
Volume 62, Issue 5, Pages (June 2009)
Elizabeth A. Phelps, Joseph E. LeDoux  Neuron 
Computational models for imaging analyses
Volume 62, Issue 1, Pages (April 2009)
Xaq Pitkow, Dora E. Angelaki  Neuron 
Wellcome Trust Centre for Neuroimaging University College London
Effective Connectivity between Hippocampus and Ventromedial Prefrontal Cortex Controls Preferential Choices from Memory  Sebastian Gluth, Tobias Sommer,
Music Biology: All This Useful Beauty
Linking Electrical Stimulation of Human Primary Visual Cortex, Size of Affected Cortical Area, Neuronal Responses, and Subjective Experience  Jonathan.
Alan N. Hampton, Ralph Adolphs, J. Michael Tyszka, John P. O'Doherty 
Jason A. Cromer, Jefferson E. Roy, Earl K. Miller  Neuron 
Daphna Shohamy, Anthony D. Wagner  Neuron 
Decision Making: From Neuroscience to Psychiatry
Predicting Value of Pain and Analgesia: Nucleus Accumbens Response to Noxious Stimuli Changes in the Presence of Chronic Pain  Marwan N. Baliki, Paul.
Volume 62, Issue 1, Pages (April 2009)
Keno Juechems, Jan Balaguer, Maria Ruz, Christopher Summerfield  Neuron 
Volume 63, Issue 4, Pages (August 2009)
Volume 74, Issue 3, Pages (May 2012)
Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders  Gustavo Deco, Morten L. Kringelbach  Neuron 
Volume 80, Issue 2, Pages (October 2013)
Reinforcement Learning Signal Predicts Social Conformity
Activity in Both Hippocampus and Perirhinal Cortex Predicts the Memory Strength of Subsequently Remembered Information  Yael Shrager, C. Brock Kirwan,
Probabilistic Population Codes for Bayesian Decision Making
Volume 62, Issue 5, Pages (June 2009)
Volume 79, Issue 1, Pages (July 2013)
Eleanor H. Simpson, Christoph Kellendonk, Eric Kandel  Neuron 
Confidence as Bayesian Probability: From Neural Origins to Behavior
Attentional Modulations Related to Spatial Gating but Not to Allocation of Limited Resources in Primate V1  Yuzhi Chen, Eyal Seidemann  Neuron  Volume.
Decision Making: From Neuroscience to Psychiatry
Intrinsic and Task-Evoked Network Architectures of the Human Brain
Consolidation Promotes the Emergence of Representational Overlap in the Hippocampus and Medial Prefrontal Cortex  Alexa Tompary, Lila Davachi  Neuron 
Shigeyoshi Fujisawa, György Buzsáki  Neuron 
Volume 74, Issue 3, Pages (May 2012)
Rachel Yehuda, Joseph LeDoux  Neuron 
Peter Kok, Janneke F.M. Jehee, Floris P. de Lange  Neuron 
Neuromodulation of Brain States
Volume 81, Issue 5, Pages (March 2014)
Placebo Analgesia: A Predictive Coding Perspective
Joseph T. McGuire, Matthew R. Nassar, Joshua I. Gold, Joseph W. Kable 
The Future of Memory: Remembering, Imagining, and the Brain
Absolute Coding of Stimulus Novelty in the Human Substantia Nigra/VTA
Medial Axis Shape Coding in Macaque Inferotemporal Cortex
Hippocampal and Ventral Medial Prefrontal Activation during Retrieval-Mediated Learning Supports Novel Inference  Dagmar Zeithamova, April L. Dominick,
Adam P.R. Smith, Klaas E. Stephan, Michael D. Rugg, Raymond J. Dolan 
Memory: Enduring Traces of Perceptual and Reflective Attention
Kerstin Preuschoff, Peter Bossaerts, Steven R. Quartz  Neuron 
Mnemonic Training Reshapes Brain Networks to Support Superior Memory
Volume 59, Issue 5, Pages (September 2008)
A Neural Signature of Hierarchical Reinforcement Learning
Amygdala Inhibitory Circuits and the Control of Fear Memory
Neurobiology of Schizophrenia
Israel Liberzon, James L. Abelson  Neuron 
On the Integration of Space, Time, and Memory
Megan E. Speer, Jamil P. Bhanji, Mauricio R. Delgado  Neuron 
Volume 69, Issue 3, Pages (February 2011)
Predictive Neural Coding of Reward Preference Involves Dissociable Responses in Human Ventral Midbrain and Ventral Striatum  John P. O'Doherty, Tony W.
Arielle Tambini, Nicholas Ketz, Lila Davachi  Neuron 
Jason A. Cromer, Jefferson E. Roy, Earl K. Miller  Neuron 
Norepinephrine and Corticotropin-Releasing Hormone: Partners in the Neural Circuits that Underpin Stress and Anxiety  Yajie Sun, Sarah Hunt, Pankaj Sah 
Perceptual Classification in a Rapidly Changing Environment
Christian J. Fiebach, Jesse Rissman, Mark D'Esposito  Neuron 
Volume 50, Issue 1, Pages (April 2006)
An Upside to Reward Sensitivity: The Hippocampus Supports Enhanced Reinforcement Learning in Adolescence  Juliet Y. Davidow, Karin Foerde, Adriana Galván,
Predicting Value of Pain and Analgesia: Nucleus Accumbens Response to Noxious Stimuli Changes in the Presence of Chronic Pain  Marwan N. Baliki, Paul.
Keno Juechems, Jan Balaguer, Maria Ruz, Christopher Summerfield  Neuron 
Presentation transcript:

Translational Perspectives for Computational Neuroimaging Klaas E. Stephan, Sandra Iglesias, Jakob Heinzle, Andreea O. Diaconescu  Neuron  Volume 87, Issue 4, Pages 716-732 (August 2015) DOI: 10.1016/j.neuron.2015.07.008 Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 1 Graphical Overview of Modeling Approaches Discussed in This Paper The figure contains graphics that has been adapted, with permission, from Deco et al. (2013a) and Chen et al. (2009). See main text for details. Neuron 2015 87, 716-732DOI: (10.1016/j.neuron.2015.07.008) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 2 Application of a BNM to fMRI Data from Patients with Schizophrenia (A) Voxels in medial PFC with enhanced global connectivity at 12-month follow-up compared to baseline. Connection strengths for healthy controls are shown for comparison. (B) BNM with two key parameters: local coupling (w) within nodes and long-range global coupling (G) between 66 nodes. (C) Simulations showed enhanced global connectivity when increasing either w or G. Adapted from Anticevic et al. (2015), with permission. Neuron 2015 87, 716-732DOI: (10.1016/j.neuron.2015.07.008) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 3 Summary of the Classical Deterministic DCM for fMRI For mathematical details, see Friston et al. (2003) and Stephan et al. (2007). Neuron 2015 87, 716-732DOI: (10.1016/j.neuron.2015.07.008) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 4 A Prototype Computational Assay for Inferring DA Effects on Glutamate Receptor Conductances Adapted, with permission, from Moran et al. (2011b). (A) A prefrontal microcircuit DCM with three cell classes and receptor types was used to model MEG data of healthy subjects performing a WM task twice, under L-Dopa or placebo. (B) Differences in parameter estimates across drug conditions. In line with previous data, administration of L-Dopa reduced AMPAR conductance (γ1,3) and enhanced the sensitivity (nonlinearity) of NMDARs (α). (C) Changes in AMPAR conductance (left) and NMDAR nonlinearity (right) each significantly (p < 0.05) correlated with drug-induced change in performance. Neuron 2015 87, 716-732DOI: (10.1016/j.neuron.2015.07.008) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 5 An Overview of Predictive Coding Architectures Figures are reproduced, with permission from the respective publishers. (A) Predictive coding (PC) assumes that the brain constructs a hierarchical generative model of its sensory inputs and infers their causes by model inversion. Belief updating rests on message passing between hierarchically related neuronal populations: each population sends predictions about expected input to the next lower level and prediction error (PE) to the next higher level (Rao and Ballard 1999). This recurrent message passing serves to minimize PE at all levels. (B) A putative neuronal implementation of PC (Friston 2005a): upper and lower circles represent neural units encoding PE (ξ) and the posterior expectation of causes (ϕ), respectively. (C) A more refined version assigns PEs and expectations to supra- and infragranular pyramidal cells, respectively, and distinguishes causal states (v) and hidden states (x); while the former connect hierarchical levels, the latter represent the temporal dynamics of expectations and endow the model with memory (Friston et al., 2012). (D) Proposed neurobiological components of PC architectures (Corlett et al., 2011). PEs are assumed to be signaled by fast glutamatergic (and in some circuits GABAergic) transmission, predictions via NMDARs, and precision by neuromodulatory transmitters (DA, ACh). Neuron 2015 87, 716-732DOI: (10.1016/j.neuron.2015.07.008) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 6 Computational fMRI Studies of Neuromodulation Figures are reproduced, with permission from the respective publishers. Please see individual papers for significance levels. (A–C) Midbrain activity reflects precision-weighted sensory PEs (Iglesias et al., 2013) (A), reward PEs (Klein-Flügge et al., 2011) (B), and precision (of beliefs about the value of policies) (Schwartenbeck et al., 2014) (C). (D and E) Encoding of expected uncertainty (operationalized by probability PEs) in the septal part of the cholinergic basal forebrain (Iglesias et al., 2013) (D) and of unexpected uncertainty in the locus coeruleus (Payzan-LeNestour et al., 2013) (E). Neuron 2015 87, 716-732DOI: (10.1016/j.neuron.2015.07.008) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 7 Model-Based fMRI Studies of Neuromodulation in Patients with Schizophrenia versus Controls Figures are reproduced, with permission from the respective publishers. Please see individual papers for significance levels. (A and B) During instrumental conditioning, patients showed reduced midbrain PE responses on reward trials (A) and augmented PE responses to neutral cues (Murray et al., 2008) (B). A similar paradigm found a trend to reduced PE activity in the midbrain (MB) of patients. Decreases in PE activity correlated with severity of psychotic symptoms in MB, right insula (RIn) and amygdala-hippocampus (RA-H) (Gradin et al., 2011). (C) Patients’ midbrain activation to neutral stimuli versus fearful stimuli during aversive conditioning correlated significantly with delusional symptoms (Romaniuk et al., 2010). Neuron 2015 87, 716-732DOI: (10.1016/j.neuron.2015.07.008) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 8 Graphical Summary of the Translational Neuromodeling Strategy Outlined in This Paper Panel 1 adapted, with permission, from Chen et al. (2009). Neuron 2015 87, 716-732DOI: (10.1016/j.neuron.2015.07.008) Copyright © 2015 Elsevier Inc. Terms and Conditions