Dividing Polynomials pages 664–666 Exercises 11. 3x – 1

Slides:



Advertisements
Similar presentations
Graph of Exponential Functions
Advertisements

Unit 3 Practice Test Review. 1a) List all possible rational zeros of this polynomial: 5x 4 – 31x x 2 – 31x + 6 p  1, 2, 3, 6 q  1, 5 p  1, 2,
Heath Algebra 1 McDougal Littell JoAnn Evans Math 8H Heath 12.5 Rational Functions.
Lesson 11-3 Warm-Up.
Moon 11/23 Lesson 5 – 4 Learning Objective: To divide polynomials by long division Hw: Pg.
X + 5 4x +20x R + 3 3x x Tues 11/24 Lesson 5 – 4 Learning Objective: To divide polynomials by synthetic division Hw: Pg.
Section 8.1: Graphs of Rational Functions and Reducing Rational Expressions.
CHAPTER 9 SECTION 3 RATIONAL FUNCTIONS AND GRAPHS Algebra 2 Notes May 21, 2009.
Algebra 2 Notes May 20, Homework #63 Answers 1) 4) 7) direct; 8) inverse; 12) neither 13) 17) A varies jointly with b and h 18) h varies directly.
Dividing Polynomials Section 4.3.
Warm-ups Week 8 10/8/12 Find the zeros of f(x) = x3 + 2x2 – 13x + 10 algebraically (without a graphing calculator). What if I told.
Factoring by Grouping pages 499–501 Exercises
1a. Divide using long division. (9x3 – 48x2 + 13x + 3) ÷ (x – 5)
28 – The Slant Asymptote No Calculator
Using the Quadratic Formula
Solving Quadratic Equations
Scatter Plots and Equations of Lines
The Pythagorean Theorem
Exponential Functions
Areas of Parallelograms and Triangles
Slope-Intercept Form pages 294–296 Exercises 1. –2; 1 2. – ; ; –
Function Rules, Tables, and Graphs
Multiplying and Dividing Rational Expressions
Factoring Trinomials of the Type ax2 + bx + c
22–23. Choices of variables may vary. 22. P( ) = E(h) = 7.10h
Graphing Absolute Value Equations
Solving Systems by Graphing
Vectors Pages Exercises , –307.3, –54.2
Operations with Radical Expressions
Standard Form pages 301–303 Exercises 1. 18; ; –9 3. –6; 30
Circles in the Coordinate Plane
Simplifying Radicals pages 581–583 Exercises
Notes Over 9.3 Graphing a Rational Function (m < n)
Space Figures and Drawings
Volume of Pyramids and Cones
Volumes of Prisms and Cylinders
Areas of Trapezoids, Rhombuses, and Kites
Division Properties of Exponents
Multiplying and Factoring
Factoring Special Cases
Scientific Notation pages 402–404 Exercises  10–
Multiplication Properties of Exponents
Zero and Negative Exponents
Point-Slope Form and Writing Linear Equations
Solving Multi-Step Equations
Subtracting Real Numbers
Exponential Growth and Decay
Exploring Quadratic Graphs
Quadratic Functions pages 520–523 Exercises 1. x = 0, (0, 4)
The Distributive Property
Relations and Functions
Trigonometry and Area Pages Exercises cm2
Areas of Circles and Sectors
Exponents and Order of Operations
Choosing a Model pages 563–566 Exercises 1. quadratic 2. linear 3.
Simplifying Rational Expressions
Adding and Subtracting Rational Expressions
Using the Discriminant
Solving Radical Equations
Percent of Change pages 207–209 Exercises %; increase
Proportions and Similar Figures
Proportions and Percent Equations
Writing a Function Rule
Adding Real Numbers pages 27–30 Exercises (–3); –42
Equations and Problem Solving
Geometric Probability
Solving Rational Equations
Formulas pages 113–115 Exercises 12. y = –2x r = 13. y =
Completing the Square pages 544–546 Exercises , – , –2
3.2 The Remainder Theorem.
Presentation transcript:

Dividing Polynomials pages 664–666 Exercises 11. 3x – 1 ALGEBRA 1 LESSON 12-5 pages 664–666  Exercises 1. x4 – x3 + x2 2. 3x4 – 3. 3c2 + 2c – 4. n2 – 18n + 3 5. 4 – 6. –t 3 + 2t 2 – 4t + 5 7. x – 3 8. 2t + 9 + 9. n – 1 10. y – 3 + 11. 3x – 1 12. –2q – 10 + 13. 5t – 50 14. 2w2 + 2w + 5 – 15. b2 – 3b – 1 + 16. c2 – 17. t 2 – 2t – 2 18. n2 – 2n – 21 – 19. (r 2 + 5r + 1) cm 20. (4c2 – 8c + 16) ft 21. b + 12 + 22 2q + 1 2 x 1 3 10 w – 1 3 3b – 1 16 q 1 c – 1 8 n + 2 16 t – 3 8 y + 2 1 b + 4 12-5

41. a. Answers may vary. Sample: (c3 + 3c2 – 2c – 4); (c + 1) Dividing Polynomials ALGEBRA 1 LESSON 12-5 22. a – 1 – 23. 10w – 681 + 24. t – 25. 2x2 + 5x + 2 26. 3q 2 + 2q + 3 + 27. 3x + 2 – 28. c2 + 11c – 15 + 29. 2b2 + 2b + 10 + 30. y2 + 5y + 29 + 31. 28a – 12 32. 5t 3 – 25t 2 + 115t – 575 + 1 2x 8 c 12 q – 2 2 a + 4 49,046 w + 72 10 b – 1 138 y – 5 9 t + 4 2881 t + 5 33. k 2 – 0.3k – 0.4 34. 3s – 8 + 35. –2z2 + 3z – 4 + 36. 6m2 – 24m + 99 – 37. –16c2 – 20c – 25 38. 2r 4 + r 2 – 7 39. t – 1 + 40. z3 – 3z2 + 10z – 30 + 41. a. Answers may vary. Sample: (c3 + 3c2 – 2c – 4); (c + 1) b. (c3 + 3c2 – 2c – 4) ÷ (c + 1) = c2 + 2c – 4 29 2s + 3 5 z + 1 326 m + 4 2t 2t 3 + 1 88 z + 3 12-5

b. Answers may vary. Sample: x –2 –1 0 1 2 y 1 Dividing Polynomials ALGEBRA 1 LESSON 12-5 42. a. y = 2 – b. Answers may vary. Sample: x –2 –1 0 1 2 y 1 c. vertical asymptote: x = –3 horizontal asymptote: y = 2 43. The binomial is a factor of the polynomial if there is no remainder from the division. 1 x + 3 44. m2 + 5m + 4 45. a. d – 2 + b. d 2 – 2d + 3 – c. d 3 – 2d 2 + 3d – 4 + d. Answers may vary. Sample: d 4 – 2d 3 + 3d 2 – 4d + 5 – e. d 4 – 2d 3 + 3d 2 – 4d + 5 – 46. 12 47. a. t = b. t 2 – 7t + 12 48. 2a2b2 – 3ab3 + 5ab2 49. 3x + 2y 3 2 5 7 4 9 d + 1 6 d r 12-5

[1] one computational error OR correct answer with no work shown x + 1 Dividing Polynomials ALGEBRA 1 LESSON 12-5 50. 10r 5 + 2r 4 + 5r 2 51. 2b3 – 2b2 + 3 52. a. x – 3 + b. ƒ(x) = x – 3 + c. y = x – 3 d. 53. C 54. G 55. B 56. [2] x2 + 3x + 2 2x – 1 2x3 + 5x2 + x – 2 2x3 – x2 6x2 + x 6x2 – 3x 4x – 2 x + 2 x2 + 3x + 2 x2 + 2x x + 2 The width is x + 1. [1] one computational error OR correct answer with no work shown 10 x + 5 x + 1 12-5

b. Tables may vary. Sample: Dividing Polynomials ALGEBRA 1 LESSON 12-5 57. [4] a. 3 x + 4 3x + 10 3x + 12 –2 y = 3 – b. Tables may vary. Sample: vertical asymptote: x = –4 horizontal asymptote: y = 3; [3] appropriate methods, but with one computational error [2] no asymptotes OR no graph [1] one part only 58. n + 2 59. 60. 61. 62. 5 63. 9.4 64. 15 65. 17.9 66. 12.0 67. 16.2 68. 5.38 69. 17 70. –12.7 71. 63.25 72. 6.32 (t – 5)(3t + 1)(2t + 11) (2t – 55)(t + 1)(3t) 3c + 8 2c + 7 2 x + 4 (x + 5)(x + 4)2 (x + 7)(x + 8)2 12-5