CH3I VMI-REMPI data and analysis:

Slides:



Advertisements
Similar presentations
HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.
Advertisements

I 2 fs REMPI 1) Energetics / excitation calculations....slide 2 2) Absorption spectrum slides 3-6 3)REMPI spectrum slide.
HCl,  =0, H 3 7Cl and H35Cl analysis. agust,www,.....Sept10/PPT aak.ppt agust,heima,...Sept10/XLS ak.xls agust,heima,...Sept10/Look for J ak.pxp.
Comparison of E(1), V(m+8), H(0) and V(m+7) VMI data: 1 color exp: KER spectra, 1color exp.……………………..…………..2-5 Beta2 vs J´,1 color exp.…………………………………….6-10.
CH3Br, Energy for CH3Br ->->-> CH3 + Br
Frequency and Time Domain Studies of Toluene Adrian M. Gardner, Alistair M. Green, Julia A. Davies, Katharine L. Reid and Timothy G. Wright.
Spectroscopy The Light Spectrum. Vibrational Spectroscopy D(t) r(t) Band structure The higher the BO: i) the deeper the Well, ii) the wider the spacing.
P461 - Molecules 21 MOLECULAR ENERGY LEVELS Have Schrod. Eq. For H 2 (same ideas for more complicated). For proton and electron 1,2 real solution: numeric.
CH2Br2: 1) Absorption 2) REMPI scans: overview (slides 12-15) 3) C+ REMPI vs absorption spectrum agust,www,....ch2br2/PPT ak.ppt agust,heima,...CH2Br2/PXP ak.pxp.
CH2Br2 agust,www,....ch2br2/PPT ak.ppt agust,heima,....CH2Br2/Long, Sept-11/Merged CH2Br2 spectra jlak.pxp agust,heima,....CH2Br2/Long, Sept-11/Merged.
II. Multi- photon excitation / ionization processes
Spectroscopy Molecules move Movement can be monitored with electromagnetic radiation, e.g. light.
HBr, F 1  2, v´=1
HCl agust,heima,...Sept10/aHCl(3+1)j3S(0)Calc ak.pxp (JMS paper) agust,www,....Sept10/PPT ak.ppt agust,heima,...Sept10/HCl(3+1)j3Sigma(0) Calc ak.pxp.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
CH 3 Br: & Literature survey on Direct ion-pair state excitation vs Ion pair fomation via initial Rydberg state excitation (Rydberg doorway.
CH 2 Br 2 agust,www,...rempi/ch2br2/PPT ak.ppt agust,heima,....CH2Br2/Long, Sept-11/Merged CH2Br2 spectra jl ak.pxp.
CF3Br agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp.
1 CH3Br, C, C* and C** dissociation formation channels vs C+ spectra Explanation for enhanced C+ Rydberg state spectra in the cm-1.
Fig. 1. Fig. 2 Fig. 3 Fig. 4 Fig. 5 Comments: Judging from the unnormalized spectra (figs 4-5) C +, CH + and C 2 + (possibly also slight H + (?))
CH3Br agust,www,...Sept09/PPt ak.ppt agust,heima,....Sept09/CH3BR avhwak.pxp agust,heima,....Sept09/CH3BR bvhwak.pxp.
H35Cl, j(0+) intensity ratio analysis and comparison of experimental data agust,www,....Jan11/PPT ak.ppt agust,heima,...Jan11/Evaluation of coupling.
HYDROGEN ATOM AND SPECTROSCOPY.. Energy Levels for the Hydrogen atom.
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
Introduction Methods Conclusions Acknowledgement The geometries, energies, and harmonic vibrational frequencies of complexes studied were calculated using.
Ionization Energy Measurements and Spectroscopy of HfO and HfO+
Wbt1 Chapter 10. REMPI, ZEKE, and MATI Spectroscopies Resonance-enhanced multiphoton ionization (REMPI) spectroscopy involves more than one photons in.
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
Eirík´s project(?) CH3I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,
TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG,
HCl, E(v´=2) agust,www,…..hcl/June11/PPT ak.ppt agust,heima,…HCl/June11/HCl E2 spectra jl.pxp agust,heima,…HCl/June11/HCl E2 spectra jlaka.pxp.
Current team Mikhail Ryazanov Dr. Chirantha Rodrigo Overtone-induced dissociation and isomerization of the hydroxymethyl (CH 2 OH) radical First team:
Eirík´s project(?) CH 3 I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
2008 International Symposium on Molecular Spectroscopy Anion Photoelectron Spectra of CHX 2 - and CX 2 - Properties of the Corresponding Neutrals Scott.
HBr Energetics agust,www,....hbr/PPT ak.ppt agust, heima,...HBr/XLS ak.xls.
IR photodepletion and REMPI spectroscopy of Li(NH 2 Me) n clusters Tom Salter, Victor Mikhailov, Corey Evans and Andrew Ellis Department of Chemistry International.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
IB NOTES: Modern Analytical Chemistry. Definitions: Qualitative Analysis: The detection of the __________________ but not the __________ of a substance.
Resonance-enhanced Photoassociative Formation of Ground-state Rb 2 and Spectroscopy of Mixed-Character Excited States H.K. Pechkis, D. Wang, Y. Huang,
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
( ak.ppt )
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3I VMI-REMPI data and analysis:
Eirík´s project(?) CH3I: agust,www,...rempi/ch3i/PPT ak.ppt
HBr, Angular distributions for V(m+i), i = 4-10; J´
Updated (p:15-16, refs. & p:50-51)
CH3I summary This file includes some ideas about dissociation of
DCl (HCl) Heavy Rydberg states work Exploring V state spectra
Resolution of Transient States of Nitrile Anions via Photodissociation Action Spectroscopy; Our Progress to Date The 2 traces show resonant Cu atomic.
H(0), one-color, VMI and slicing images
HBr, 3S-, J´= 8 & V(m+9) Updated:
2 color VMI exp. CH3(X;v1v2v3v4) detection; hi
VMI-fitting results for V(m+i), i=4-10
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
HBr Mass resolved REMPI and Imaging REMPI.
CH3I summary This file includes some ideas about dissociation of
1hv spectrum corrected/shifted
HI Absorption REMPI references (slide 9) Energetics (slides 10-)
CH3Br Negative particle detections; Electrons /PES:
HBr The cm-1 system (slides 2-16)
KER predictions for Br+ images
CF3Br agust,www,....cf3br/PPT ak.ppt agust,heima,....Sept10/XLS ak.xls
Bgr nLASER/ cm
B-outer-well- region “Jump effect”??? WHY?. B-outer-well- region “Jump effect”??? WHY?
Presentation transcript:

CH3I VMI-REMPI data and analysis: Content pages: Plan-table and fig.………………………………………………………………………… 2-3 Figs. From Pavle:………………………………………………………………………… 4-9 CH3+, KERs, images and threshold predictions:………………………….. 10-25, 66-67,69-70 CH2+, KERs, and threshold predictions:………………………….. 26-28 I+, KERs, and threshold predictions:……………………………… 29-36,71-73 e- PES´s, and threshold predictions…….......................……. 37-55 Conclusive remarks:……………………………………………………………………….. 56 From the literature(energetics of CH3)…………………………………………. 57-60 Energetics:…………………………………………………………………………………… 61-65,68 Exp. recordings etc.; reality………………………………………………………… 74-75 Energetics and excitation channels vs. #.......................................... 76-142 MR-REMPI spectra………………………………………………………………………… 143-145 CH3I Rydberg states recorded………………………………………………………. 146-152 #0, PES vs pix-factor……………………………………………………………………… 153 Updated: 190223 https://notendur.hi.is/agust/rannsoknir/Crete17/PPT-170920.pptx

VMI-REMPI experimental plan: CH3I: no. 2hv/ eV 2hv/cm-1 1hv/cm-1 l / nm(1hv) Rydberg state converging to ref: Comment Predicted / 6.777 54660.17 27330.08540 365.897136 6s(0,..) 2E1/2 Table 4* 1 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ Table 5* Not accessable by MOPO; use dye laser 2 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 Try use MOPO 3 7.36 59362.38 29681.19062 336.9137083 6p(3/2) +v3 Table 6 * 4a 4b 7.381 59531.76 29765.8788 (?) Unassigned peak, relatively strong (?) 4c 5 7.402 59701.13 29850.56698 335.0020121 6p(3/2) +nv6 6 7.642 61636.86 30818.43189 324.4811428 6p(3/2) +nv1 7 7.82 63072.53 31536.26504 317.0952549 5d(0,…) # 8 7.996 64492.07 32246.03264 310.1156695 6p(0,…) # 9 8.022 64701.77 32350.88467 309.1105576 7s(0,…) # 10 8.299 66935.92 33467.96209 298.7932152 7s(3/2) +nv2 Table 6* 11 8.429 67984.44 33992.22225 294.184944 7p(0,…) # (Try use MOPO); used exc./dye 12 8.652 69783.06 34891.53006 286.6025073 i.e. 6 fundamental (0,…) bands (#); 5 vibrational bands; 1 uncertain band(?) / three bands for convergence to 2E1/2 ($) *ref: https://notendur.hi.is/agust/rannsoknir/papers/CH3X/cp331-232-07.pdf ; https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

(4) (2) (12) (6) (5) (11) (10) (0) (7) (3) (8) (9) (1)

CH3+ KERs… and predictions I+ KERs……… and predictions Figs from Pavle: CH3+ KERs… and predictions I+ KERs……… and predictions PES´s………… and predictions See : https://notendur.hi.is/agust/rannsoknir/Crete17/PPT-170926PG.ppt 

KER for CH3+ from Pavle; Fig. from OriginPro 8.5 eV 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 from Pavle; Fig. from OriginPro 8.5 eV

26-09-2017, CH3I at 286.600 nm, CH3

20-09-2017, CH3I at 358.835 nm, I fragments, irises low

NB: thresholds obtained for D(CH3-I)=2.476 eV (PC; CRC) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 Ideas from Pavle; Fig. from OriginPro 8.5 Also in: https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions NB: thresholds obtained for D(CH3-I)=2.476 eV (PC; CRC) eV

20-09-2017, CH3I at 358.835 nm, photoelectrons From PC..…CH3I results.ppt in 20170920

CH3+ KERs, images and threshold predictions:

eV CH3+ KERs, Off resonance resonance resonance 170928 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ Off resonance (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170920 resonance resonance eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay18,Gr19 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra

eV CH3+ KERs, For E(M+,eV) = 3.5e-5 x (pix)2 MOPO 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 170929 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 exc./dye eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay19,Gr20 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra

eV CH3+ KERs, For E(M+,eV) = 3.5e-5 x (pix)2 171003; (4a); 336.357(exp.) 171019; (4a); 336.357(exp.) less space charge effect eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay31,Gr34 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra

eV CH3+ KERs, Abel converted; file: „abel_speed“ 170925 (11) 8.429 67984.44 33992.22225 294.184944 7p(0,…) # 2E3/2 Abel converted; file: „abel_speed“ NOT Abel converted; file: „x_speed“ 171020 (11) 294.184944 7p(0,…) # 2E3/2 eV For E(M+,eV) = 3.50e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay12,Gr13 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra

eV CH3+ Prediction calc: polarizer not IN Possibly: (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ polarizer not IN Prediction calc: Possibly: CH3I + 1hvpd -> CH3I* CH3I* -> CH3#(..vi=1..)+ I; CH3#(..vi=1..)+ 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI CH3#(..vi=1..): vibrationally excited NB: thresholds obtained for D(CH3-I)=2.38 eV (AK) Threshold for CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (0,0,..+ I* CH3 (0,..) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI 0.897144 eV Threshold for CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (0,0,..+ I CH3 (0,..) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI 1.74001eV Subscript notations: pd = photodissociation i= ionization DE = 0.33 eV / 2662 cm-1(?) eV For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay7,Gr7 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions

eV CH3+ KERs, updated: 170926 Off resonance see also slide 6 286.6 (exp.) 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ 286.5855(exp.) see also slide 6 above (PG) for predictions eV For E(M+,eV) = 3.50e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay13,Gr15 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV CH3+ KERs, Thresholds: i=2(3p2A2) i=1(3s2A1´ CH3**(i) + I* 170920 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 CH3**(i) + I* NB: thresholds obtained for D(CH3-I)=2.476 eV (PC;CRC) CH3**(i) + I i=2(3p2A2) i=4(3d2A1´) i=3(3d2E) i=1(3s2A1´ CH3**(i) + I* i=1(3s2A1´ i=2(3p2A2) CH3**(i) + I i=1(3s2A1´ eV For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay2,Gr3 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra & Predictions

eV CH3+ KERs, Thresholds: i=2(3p2A2) i=1(3s2A1´ CH3**(i) + I* 170920 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 CH3**(i) + I* NB: thresholds obtained for D(CH3-I)=2.38 eV (AK) CH3**(i) + I i=2(3p2A2) i=4(3d2A1´) i=3(3d2E) i=1(3s2A1´ CH3**(i) + I* i=1(3s2A1´ i=2(3p2A2) CH3**(i) + I i=1(3s2A1´ eV For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay2,Gr3 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra & Predictions

NB: The polarizer was not inserted in CH3+ images: Ry(2), 170919(170920); 339.467 nm(exp.) <= x1_10fl (RAW file) Ry(12), 170921; 286.5885 nm(exp.) <= x1_5fl (RAW file) Ry(1), 170920; 358.835 nm(exp.) <= x1_5fl (RAW file) NB: The polarizer was not inserted in the 170921 exp., hence, the angul. distrib. is invalid Rings might be because of 1hvpd channel(?)i.e.:

eV CH3+ KERs, : Virtually no difference 170920 (1) 359.062394 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 NO polarizer in 170921; (12) 286.6025073 7s(0,…) # 2E1/2 $ 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ eV Virtually no difference https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay6,Gr8 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c,7,8 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV CH3+ KERs, : Virtually no difference 170920 (1) 359.062394 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 171011; (9c); 310.1525(exp.) 171020 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ eV Virtually no difference https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay6,Gr8 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c,7,8,6,9c https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

CH3+ KERs Comparison of shifted spectra: D(1hv) comparison Likely channels………………………. 22 D(3hv) comparison

D1hv / eV CH3+ KERs, Common thresholds for CH3I+1hv -> CH3 (X,v1v2v3v4)+I/I*: NO FITS! 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ Virtually no difference D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay26,Gr26 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

D1hv / eV Common thresholds for CH3+ KERs, CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I interpretation Likely 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 171005; (7); 317.120(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ Virtually no difference D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay28,Gr28 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c,7 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

D3hv / eV CH3+ KERs, Common thresholds for CH3I+3hv -> CH3 **(Ry,0000)+I/I* and CH3+ + I-: CH3 **(3p2A2) CH3 **(3p2A2) CH3+ + I- 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 11 171002 9c : (3) 336.9137083 6p(3/2) +v3 2E3/2 8 171003; (4a); 336.357(exp.) 7 6 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) Could be vibrational structure In the CH3**(3p2A2) + I Channel (?); however peaks do not match and PES spectra suggest that CH3** formation is not important. See slide 43 & KM work 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 171011; (9c); 310.1525(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ Virtually no difference D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay27,Gr27 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

CH2+ KERs:

eV CH2+ KERs, For E(M+,eV) = 3.41407e-5 x (pix)2 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay3,Gr4 For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV CH2+ KERs, Z: Space charge NO Space charge Z: See PG PPT file on 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 171019 (1) 359.062394 6s (1/2) +v2 2E1/2 $ See PG PPT file on Images and KERs the KERs don´t seem to agree(?) 170929 (2) 339.444(exp.) 6p (0…) # 2E3/2 171013 (2) 339.467(exp.) 6p (0…) # 2E3/2 eV (1): For E(M+,eV) = 3.5e-5 x (pix)2 & 3.41407e-5 x (pix)2 (2):For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay3,Gr4 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

I+ KERS and threshold predictions:

eV iris low I+ KERs, iris open Very high energy I+: (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ iris low Very high energy I+: Prediction calc. for CH3 + I/I* formation after 2hv, 3hv and 4hv could not predict these! See: https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay4,Gr5 For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV iris low I+ KERs, updated: 170929 Off resonance iris open (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170928 170920 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ iris low iris open eV For E(M+,eV) = 3.50e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay16,Gr17 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV I+ KERs, updated: 170926 Off resonance 286.6 (exp.) 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ Off resonance 286.5855(exp.) eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay14,Gr14 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV I+ KERs, identical For E(M+,eV) = 3.5e-5 x (pix)2 171010; (9c); 309.759(exp.) 171010; (9); 309.11(exp.) identical eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay30,Gr30 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV I+ KERs, Looks like I resonance(?) ? 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ (2) 339.4039 6p (0…) # 2E3/2 170919 I* ->-> I** OK; iodine resonance; see slide 71 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171004; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 171010; (9); 309.11(exp.) 171020; (10); 298.788(exp.) eV 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay9,Gr10 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

I+ KERs Comparison of shifted spectra: D(3hv) comparison

D3hv / eV I+ KERs Comparison on a D3hv scale: Joined thresholds for : CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ (2) 339.4039 6p (0…) # 2E3/2 170919 (3) 336.9137083 6p(3/2) +v3 2E3/2 : 171002 171004; (4b); 335.735 (exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

PES´s and Threshold predictions:

eV PES, CH3**+ 1hv -> CH3+ CH3(X) + 3hv -> CH3+(X(1/2)) 170920 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ CH3**(3p2A2)+ 1hv -> CH3+ CH3I(X) + 3hv -> CH3I+ I(1/2)+ 3hv -> I+ CH3**(3s2A1´)+ 2hv -> CH3+ eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay11,Gr12 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions

eV PES, Off resonance For E(M+,eV) = 3.29e-5 x (pix)2 170928 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ Off resonance (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170920 eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay17,Gr18 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV PES, (2) Abs. CH3I + 2hvr -> CH3I**(6p(0..),2E3/2) CH3I**(6p(0..),2E3/2) + hvpd -> CH3I# CH3I# -> CH3**((2);3p 2A2) + I/I* CH3**((2);3p 2A2) + hvi -> CH3+ + e- i.e. (2r + 1pd + 1i) REMPI NB: Threshold obtained for D(CH3-I) = 2.38 eV http://www.sciencedirect.com/science/article/pii/S0009261401008648 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 eV For E(e-,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay0,Gr1 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: „Ry spectra“ & „Predictions“

eV PES, (2) Abs. For E(e-,eV) = 3.29e-5 x (pix)2 MOPO (2) 7.306 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 170929 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 exc./dye eV For E(e-,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay20,Gr21 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: „Ry spectra“

eV PES, CH3**(3s2A1´) + 1hv -> CH3+ CH3**(3p2A2) + 1hv -> CH3+ I(3/2)+ 3hv -> I+ 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ Does not seem to fit any peaks Suggests that CH3** formation is not Important. See also slide 40 below. eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay10,Gr11 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions

eV PES, updated: 170926 Off resonance For E(M+,eV) = 3.29e-5 x (pix)2 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ 286.5855(exp.) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay15,Gr16 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV PES, : Look the same 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 : 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357 (?) 171004; (4b); 335.735 (exp.) Incorrect, see: https://notendur.hi.is/agust/rannsoknir/Crete17/PPT-170926PG.ppt, slide 27 171004; (4c); 333.902(exp.) (??) Look the same 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 171020; (10); 298.788(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay5,Gr6 For E(M+,eV) = 3.29e-5 x (pix)2 for all except: For E(M+,eV) = 3.104e-5 x (pix)2 for (6), (10),(0) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV PES, 171011; (9b); 309.11(exp.) 171011; (9a); 309.11(exp.) 171010; (9c); 309.759(exp.) 171006; (8); 310.1525(exp.) eV For E(e,eV) = 3.29e-5 x (pix)2 for (8): https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay29,Gr29 For E(e,eV) = 3.187e-5 x (pix)2 for (9,9a,9b,9c) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV PES, Thresholds: 1hv for: For E(M+,eV) = 3.29e-5 x (pix)2 CH3I(Ry(2)) + 1hv -> CH3I+(3/2,1/2)+e CH3I(Ry(1)) + 1hv -> CH3I+(3/2,1/2)+e (11): 2,5 & 3.1 eV (no fit) (12): 2.8 & 3.4 eV (no fit) -which equals that for 3hv excitation via The Rydb. States to for CH3I+(3/2) and CH3I+(1/2) 170920 1 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170929 2 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 170925 (11) 8.429 67984.44 33992.22225 294.184944 7p(0,…) # 2E3/2 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay21,Gr22 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

Comparison of shifted PES´s D(1hv) comparison D(3hv) comparison Discussion

Good matching of peaks => 1hv ionization processes PES, (on a D1hv scale) No good fits of thresholds: Ionization of CH3** not important Thresholds: 1hv Processes for CH3**(i;0..) + hv -> CH3+ + e i= 1-6 170920 1 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 2 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 170929 171002 (3) 7.36 59362.38 29681.19062 336.9137083 6p(3/2) +v3 2E3/2 170925 (11) 8.429 67984.44 33992.22225 294.184944 7p(0,…) # 2E3/2 12 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ 170922 Good matching of peaks => 1hv ionization processes are largely involved D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay24,Gr24 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

The various thresholds above are: No good fits of thresholds: Ionization of CH3** not important Let´s consider if the 1hv excitation channels are consistent with I** + 1hv -> I+ + e; I**: Rydberg states of iodine atoms NB: I+ ion signals are strong according to mass spectra. https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions-short

D1hv / eV PES, (on a D1hv scale) Thresholds for I** + hv -> I+ + e: 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171004; (4b); 335.735 (exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ For E(M+,eV) = 3.29e-5 x (pix)2 D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay24,Gr24 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D1hv / eV PES, (on a D1hv scale) Thresholds for I** + hv -> I+ + e: 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ (2) 339.4039 6p (0…) # 2E3/2 170919 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 : 171004; (4b); 335.735 (exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D1hv / eV For E(e,eV) = 3.29e-5 x (pix)2 Except: For E(e,eV) = 3.154e-5 x (pix)2 for (8) and (6) E(e,eV) = 3.104e-5 x (pix)2 for (0) https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay24,Gr24 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D1hv / eV Thresholds for PES, (on a D1hv scale) I** + hv -> I+ + e: I**(5s25p4(3P1)6s; J=3/2) + hv -> I+ + e  I**(5s25p4(3P2)6s; J =5/2 ) +hv-> I+ +e  I**(5s25p4(3P2)6s; J =3/2 ) +hv-> I+ +e  170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171004; (4b); 335.735 (exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D1hv / eV For E(M+,eV) = 3.29e-5 x (pix)2 Except: For E(M+,eV) = 3.154e-5 x (pix)2 for (8) and (6) https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay24,Gr24 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D3hv / eV PES, (on a D3hv scale) : I+ <- I(3/2) I+ <- I(1/2): CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) I+ <- I(3/2) CH3I+(3/2;0..) <- CH3I(X;0..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) I+ <- I(1/2): CH3+ <- CH3(X) 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 : 171003; (4a) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay22,Gr23 For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

D3hv / eV PES, (on a D3hv scale) 3hv processes : CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) CH3I+(3/2;0..) <- CH3I(X;0..) I+ <- I(3/2) I+ <- I(1/2) CH3+ <- CH3(X) 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 : 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay22,Gr23 For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D(3hv) comparison / The various thresholds above are:   3.138 2.526735698 3.46938419 3.438 3.264546042 2.818 2.644546042 CH3+ formation from CH3(X): by 3hv: I+ formation from I(3/2): I+ formation from I(1/2):   CH3I+(3/2;0,0,0,0,0,0) formation from CH3I(X;0,0,0,0,0,0) by 3hv: CH3I+(3/2;0,0,0,0,1,0) formation from CH3I(X;,0,0,0,0,0,0) by 3hv: CH3I+(1/2;0,0,0,0,0,0) formation from CH3I(X;0,0,0,0,0,0) by 3hv: CH3I+(1/2;0,0,0,0,1,0) formation from CH3I(X;0,0,0,0,0,0) by 3 hv: https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions-short

https://notendur. hi. is/agust/rannsoknir/Crete17/XLS-170919 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: D(nhv) comp.

From the literature: CH3 energetics

X(CH3): Methyl Radical, CH3 Vibrational states of the ground To top X(CH3): Methyl Radical, CH3 Vibrational states of the ground electronic state http://webbook.nist.gov/cgi/cbook.cgi?ID=C2229074&Units=SI&Mask=800#Electronic-Spec

*3 *2 * CH3** *6 *5 *4 Methyl Radical, CH3 electronic state To top http://webbook.nist.gov/cgi/cbook.cgi?ID=C2229074&Units=SI&Mask=800#Electronic-Spec

http://webbook. nist. gov/cgi/cbook. cgi http://webbook.nist.gov/cgi/cbook.cgi?ID=C14531534&Units=SI&Mask=800 X(CH3+):

Energetics: CH3I photoexcitation

CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 no. 2hv/cm-1 Ry 1 55700.63 2 (n) = number of photons CH3**(i)+I; i=1-6 CH3 + I+ + e; 103491.0874 no. 2hv/cm-1 Ry 1 55700.63 2 58926.84 3 59362.38 4 59531.76 5 59701.13 6 61636.86 7 63072.53 8 64492.07 9 64701.77 10 66935.92 11 67984.44 12 69783.06 i= 6 : 1 Abs. spectrum i= 6 : 1 CH3+ + e + I; 98560.91016 (4) CH3I+ + e; 76945.26047 CH3 + I**(min); 73829.45 70000 (3) 55000 (2) CH3 + I*; 26798.95741 (1) CH3 + I; 19195.9874 CH3I https://notendur.hi.is/agust/rannsoknir/rempi/ch3i/PXP-260112ak.pxp ; Layo,Gr0; https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Energetics

Abs. spectrum (n) = number of photons CH3 + I+ + e; 103491.0874 i= 6 : CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 CH3 + I+ + e; 103491.0874 i= 6 : 1 CH3+ + e + I; Abs. spectrum i= 6 : 1 (4) CH3 + I** CH3I+ + e; 76945.26047 70000 CH3 + I**(min); 73829.45 (3) 55000 (2) CH3 + I*; 26798.95741 (1) CH3 + I; 19195.9874 CH3I https://notendur.hi.is/agust/rannsoknir/rempi/ch3i/PXP-260112ak.pxp ; Layo,Gr0; https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Energetics

CH3I* -> CH3 (v1,v2,…) + I/I* CH3 (v1,v2,…) + 3hvi -> CH3+ + e- (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ i.e. CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (v1,v2,…) + I/I* CH3 (v1,v2,…) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI

CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 no. 2hv/cm-1 Ry 1 55700.63 2 (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ CH3**(i)+I*; i=1-6 (n) = number of photons CH3**(i)+I; i=1-6 CH3 + I+ + e; 103491.0874 no. 2hv/cm-1 Ry 1 55700.63 2 58926.84 3 59362.38 4 59531.76 5 59701.13 6 61636.86 7 63072.53 8 64492.07 9 64701.77 10 66935.92 11 67984.44 12 69783.06 i= 6 : 1 Abs. spectrum i= 6 : 1 CH3+ + e + I; 98560.91016 (4) CH3I+ + e; 76945.26047 CH3 + I**(min); 73829.45 70000 close to 69783 (3) 55000 (2) CH3 + I*; 26798.95741 (1) CH3 + I; 19195.9874 CH3I https://notendur.hi.is/agust/rannsoknir/rempi/ch3i/PXP-260112ak.pxp ; Layo,Gr0; https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Energetics

D3hv / eV CH3+ KERs, Common threshold for CH3+ + I- Partial interpretation Possible 12 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 11 171002 9c (3) 336.9137083 6p(3/2) +v3 2E3/2 8 171003; (4a); 336.357(exp.) 7 171003; (4b); 335.735 (exp.) 6 4c 171004; (4c); 333.902(exp.) 171010; (6); 324.5015(exp.) 4b 171005; (7); 317.120(exp.) 4a 171006; (8); 310.1525(exp.) 3 171011; (9c); 310.1525(exp.) 2 1 171020 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D3hv / eV From Kristjan: e-mail, 180619; 12:18 o´clock https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

E State transfer CH3I# CH3+ + I- Ion-pair formation CH3+ I- Ion-pair state CH3 + I/I* CH3I(X) r(CH3 - I)

no: 9 8 7 6 3hv Absorption spectra 2hv 1hv no: 9 8 7 6 CH3 + I+ + e; 103491.0874 3hv(9) = 97052.65 cm-1 CH3+ + e + I; 98560.91016 CH3I# 3hv 3hv(6) = 92455.30 cm-1 CH3I+ v2 > 0 CH3 + I** CH3I+ + e; 76945.26047; v2 = 0 Absorption spectra 2hv 1hv CH3 + I*; 26798.95741 no: 9 8 7 6 CH3 + I; 19195.9874 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180625.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

D3hv / eV CH3+ KERs, Common thresholds for CH3I+3hv -> CH3 (X,0000)+I** I**(6s,2D3/2) I**(6s,2D5/2) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 171011; (9c); 310.1525(exp.) 171020 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay32,Gr35 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c,7,8,6,9c https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions-short

no: 4b 4a 3 2 3hv Absorption spectra 2hv 1hv no: 4b 4a 3 2 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3I# 3hv CH3 + I** I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 I**(6s,2D5/2) Absorption spectra 2hv 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 no: 4b 4a 3 2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180626.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

Now let´s check the I+ KER for 4a and 4c (see slide 34 above) : Idea: iodine atomic lines, i.e. …I/I* + 2hv -> I**; I** + 1hv -> I+ + e- https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: I energies, NIST; see line 22 : E(I**)-E(I*) Calc. Exp. (4a) I+ KER peak is due to „accidental“ 2hv resonance Transition following I*(1/2) formation: ???? -> I*(1/2) I*(..5p; J = 1/2) + 2hv -> I**(…6p, J = 3/2); (2hv » 59459.16 cm-1; see above) I**(…6p, J = 3/2) + 1hv -> I+ + e- According to Kristján (KM) (e-mail: 26.6.18 and PPT: 20180626-CH3I-KM) the I* formation (i.e. ???? above) of concern corresponds to: CH3I + 2hv -> CH3I**(short lived) CH3I**(short lived) -> I* + CH3(X) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

I+ KERs, Threshold for CH3I + 2hv -> CH3I**; CH3I** -> I* + CH3(X;0000); 0.429 eV; „accidental“ resonance detection: I*(..5p; J = 1/2) + 2hv -> I**(…6p, J = 3/2); I**(…6p, J = 3/2) + 1hv -> I+ + e- 171003; (4a); 336.357(exp.) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay33,Gr32 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short, box= H90

3hv 2hvr Absorption spectra 2hvr 1hv 1hv no: 4a CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 2hvr I**(6p, J=3/2) CH3I+ + e; 76945.26047; v2 = 0 I**(6s,2D3/2) Absorption spectra CH3 + I** I**(6s,2D5/2) 2hvr 1hv 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 no: 4a https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180629.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

VMI-REMPI experiments; reality: CH3I: bb no. 2hv/ eV 2hv/cm-1 1hv/cm-1 3hv/cm-1 l / nm(1hv) l/nm(exp) Rydberg state converging to ref: Comment recorded: 6.777 54660.17088 27330.0854 81990.25632 365.897136   6s(0,..) 2E1/2 Table 4* 1 6.906 55700.62566 27850.3128 83550.93849 359.062394 6s (1/2) +v2 Table 5* Not accessable by MOPO; try dye laser 2 7.306 58926.84203 29463.421 88390.26305 339.4039 6p (0…) 2E3/2 Try use MOPO 170919(& 170920) 3 7.36 59362.38124 29681.1906 89043.57187 336.913708 6p(3/2) +v3 Table 6 * 4a 59460.6326 29730.3163 89190.9489 336.357 4b 59570.79244 29785.3962 89356.18866 335.735 4c(?) 29948.9072 89846.72149 333.902 ??; skip that one 4c(??) 29967.0363 89901.10878 333.7 7.381 59531.7576 29765.8788 89297.63641 Unassigned peak, relatively strong (?) 5 7.402 59701.13396 29850.567 89551.70095 335.002012 6p(3/2) +nv6 6 7.642 61636.86379 30818.4319 92455.29568 324.481143 6p(3/2) +nv1 7 7.82 63072.53007 31536.265 94608.79511 317.095255 5d(0,…) 8 7.996 64492.06528 32246.0326 96738.09791 310.115669 6p(0,…) 9 8.022 64701.76934 32350.8847 97052.65401 309.110558 7s(0,…) 10 8.299 66935.92418 33467.9621 100403.8863 298.793215 7s(3/2) +nv2 Table 6* 66937.09252 33468.5463 298.788 11 8.429 67984.4445 33992.2222 101976.6667 294.184944 7p(0,…) 12 8.652 69783.06013 34891.5301 104674.5902 286.602507 i.e. 6 fundamental (0,…) bands; 5 vibrational bands; 1 unertain band(?) *ref: https://notendur.hi.is/agust/rannsoknir/papers/CH3X/cp331-232-07.pdf https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

https://notendur. hi. is/agust/rannsoknir/Crete17/XLS-170919 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

Energetics and excitation channels vs. #

See below: Major channels: ; Observations: CH3I## CH3 + I+ + e 4 CH3 + I+ + e CH3+ + I + e CH3+ + I CH3I# 2 1 e + CH3I+ 3 CH3 + I** CH3+ + I- CH3I**(Ry) 5 CH3I* CH3 + I/I* CH3I(X) See below:

No. of photons PES´s I+ KERs CH3+ KERs 1 #1,2,3,4a,4b, 6,7,8,11,12 - 2 Process no. No. of photons PES´s I+ KERs CH3+ KERs 1 =#4 (KM) I** formation CH3I+(2r+1pd)hv-> CH3I#-> CH3 + I** I** + 1hv -> I+ + e 3 1 / 4 #1,2,3,4a,4b, 6,7,8,11,12 - 2 =#1 (KM) CH3I+ formation/autoionization CH3I+(2r+1pd)hv-> CH3I#-> CH3I+ + e CH3I+ + 1hv -> CH3+ + I =#6 (KM) Ion-pair formation CH3I+(2r+1pd)hv-> CH3I#-> CH3+ + I- I- + 1hv -> I/I* + e 4 ? 4hv excitation CH3I+(2r+1pd)hv-> CH3I#; CH3I# + 1hv -> CH3I## -> CH3 + I/I* I/I*+ 3hv -> I+ + e 3 / 7 5 Rydberg predissociation CH3I+(2r)hv-> CH3I** - > CH3 + I/I* I* + 2rhv -> I**; I** + 1hv -> I+ + e 3 / 5 # : observed #: Uncertain and/or under investigation # : NOT observed Observations: Subscript „r“ = resonance Subscript „pd“ = photodissociation

# 0:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 0 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 3hv I**(6s,2P3/2) CH3 + I** I**(6s,2S1/2) CH3I+ + e; 76945.26047; v2 = 0 I**(6s,2D3/2) I**(6s,2D5/2) Absorption spectra 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 0 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#0.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

# 1:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 1 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 3hv I**(6s,2P1/2) I**(6s,2P3/2) CH3 + I** I**(6s,2S1/2) CH3I+ + e; 76945.26047; v2 = 0 I**(6s,2D3/2) I**(6s,2D5/2) Absorption spectra 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 1 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#1.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

3hv 2hvr # 1 eV PES interpretations following CH3I# excitation: e- KERs CH3+ + e + I; 98560.91016 1hv detection range for I** X,1/2 CH3 + I** X,3/2 3hv e- KERs CH3I# I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; 76945.26047; v2 = 0 I**(6s,2D5/2) 2hvr # 1 CH3 + I**(6s,2S1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#1I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM.pptx; slide 1

D3hv / eV Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; I+ KERs interpretations following CH3I# excitation: I+ KER on a D3hv scale for #12 as standard: Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** Ionization of I** requires 1 hv Ionization of I** requires 2 hv #1 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D1hv / eV Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KERs interpretations following CH3I# excitation: Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KER on a D3hv scale for #12 as standard: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I #1 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay28,Gr28 For E(M+,eV) = 3.41407e-5 x (pix)2for (1) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

# 1; Comments/questions: Where should PES peaks due to CH3I# -> CH3I+(3/2,v2=0 & 1) appear? What is the broad high KER in the I+ KER spectrum?

# 2:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 2 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 3hv I**(6s,2P1/2) CH3 + I** I**(6s,2P3/2) CH3I+ + e; 76945.26047; v2 = 0 Absorption spectra 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#2.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

3hv 2hvr # 2 eV PES interpretations following CH3I# excitation: e- KERs CH3+ + e + I; 98560.91016 1hv detection range for I** CH3 + I** CH3I# X,1/2 X,3/2 3hv e- KERs I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; 76945.26047; v2 = 0 I**(6s,2D3/2) 2hvr # 2 CH3 + I**(6s,2D5-3/2) CH3 + I**(6s,2S1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#2I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM.pptx; slide 2

D3hv / eV Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; I+ KERs interpretations following CH3I# excitation: I+ KER on a D3hv scale for #12 as standard: Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** I**(6s,2D5/2) I**(6s,2D3/2) I**(6s,2P1/2) I**(6s,2P3/2) Ionization of I** requires 1 hv I**(6s,2S1/2) #2 (2) 339.4039 6p (0…) # 2E3/2 170919 D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D1hv / eV Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KERs interpretations following CH3I# excitation: Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KER on a D3hv scale for #12 as standard: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I #2 170919 (2) 339.4039 6p (0…) # 2E3/2 D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay28,Gr28 For E(M+,eV) = 3.41407e-5 x (pix)2for (2) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

# 2; Comments/questions: PES: Where should PES peaks due to CH3I# -> CH3I+(3/2,v2=0 & 1) appear? Determine more I** threshold levels for the PESs near the strongest peaks; It looks as if signals due to ionization of many levels are piling up/overlapping in that that region (see energy levels) I+ KER: Seem to be two contributions: 1) –from the I**(2D) states (Higher KER) and 2) – from higher enery I**states (Lower KER) (see levels in slide 87) CH3+ KER: Seem to be two (or more) contributions: 1) Low KER and 2) High KER (see slide 89).

# 3:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 3 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 3hv I**(6s,2P1/2) CH3 + I** I**(6s,2P3/2) Absorption spectra CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 3 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#3.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

3hv 2hvr # 3 eV PES interpretations following CH3I# excitation: e- KERs CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 1hv detection range for I** CH3 + I** CH3I# X,1/2 3hv X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) # 3 eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#3I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM.pptx; slide 3

D3hv / eV Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; I+ KERs interpretations following CH3I# excitation: I+ KER on a D3hv scale for #12 as standard: Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** I**(6s,2D5/2) I**(6s,2D3/2) I**(6s,2P1/2) I**(6s,2P3/2) Ionization of I** requires 1 hv I**(6s,2S1/2) # 3 : 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D1hv / eV Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KERs interpretations following CH3I# excitation: Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KER on a D3hv scale for #12 as standard: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I # 3 : 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay28,Gr28 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short For E(M+,eV) = 3.50e-5 x (pix)2 for (3)

D3hv / eV Thresholds for CH3I+3hv -> CH3 (X,0000)+I** CH3+ KER on CH3+ KERs alternative(??) interpretations following CH3I# excitation: Thresholds for CH3I+3hv -> CH3 (X,0000)+I** CH3+ KER on a D3hv scale for #12 as standard: I**(6s,2D3/2) I**(6s,2D5/2) Not likely: I**(6s,2P1/2) # 3 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay32,Gr35 For E(M+,eV) = 3.50e-5 x (pix)2 for (3) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions-short

# 3; Comments/questions: PES: Determine more I** threshold levels for the PESs near the strongest peaks; It looks as if signals due to ionization of many levels are piling up/overlapping in that that region (see energy levels) Check thresholds for CH3I + 3hv -> CH3I#; CH3I# -> CH3I+(3/2,1/2) + e- (see below for CH3+ KERs) I+ KER: Add more thresholds (CH3(X,0000)) + I**) for more I** CH3+ KER: Are we observing vibrational structure in CH3+ (see slide 95), i.e.: CH3I + (2r+1)hv -> CH3I#; photoexcitations CH3I# -> CH3I+(3/2, ½) + e-; autoionization CH3I+(3/2, ½) + 1hv -> CH3+(X,v1v2v3v4) + I photodissociation CH3I+(3/2,1/2) + 1hv -> CH3+(X,v1v2v3v4) + I* photodissociation ?

# 4a:

4hv 3hv 3hv Absorption 2hv spectra 2hvr 2hvr 1hv # 4b CH3 + I+ + e; 103491.0874 3hv CH3+ + e + I; 98560.91016 3hv CH3 + I** I**(6s,2P1/2) v2 = 1 I**(6s,2P3/2) 2hv Absorption spectra CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 4b https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#4a.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

3hv 2hvr # 4a eV PES interpretations following CH3I# excitation: e- KERs CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3 + I** CH3I# X,1/2 3hv X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; 76945.26047; v2 = 0 CH3I+2hv->CH3I** CH3I**-> CH3+I* I*+2hv->I** I**+1hv-> I++e CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) # 4a CH3 + I**(6s,2S1/2) For E(e,eV) = 3.29e-5 x 0.97 (pix)2 eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#4aI.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Gr42

eV # 4a For E(M+,eV) = 3.5e-5 x (pix)2 I+ KERs interpretations following CH3I# excitation: Threshold for CH3I + 2hv -> CH3I**; CH3I** -> I* + CH3(X;0000); 0.429 eV; „accidental“ resonance detection: I*(..5p; J = 1/2) + 2hv -> I**(…6p, J = 3/2); I**(…6p, J = 3/2) + 1hv -> I+ + e- Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** # 4a 171003; (4a); 336.357(exp.) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay33,Gr32 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short, box= H90

NB! # 4a CH3+ KERs interpretations following CH3I# excitation: 171003; (4a); 336.357(exp.)

# 4b:

4hv 3hv 3hv Absorption 2hv spectra 2hvr 2hvr 1hv # 4b CH3 + I+ + e; 103491.0874 3hv CH3+ + e + I; 98560.91016 3hv CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) 2hv Absorption spectra CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 4b https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#4b.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

3hv 2hvr # 4b ? eV PES interpretations following CH3I# excitation: e- KERs CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3 + I** CH3I# X,1/2 3hv X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) # 4b ? eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#4bI.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PPT-170926PG.ppt; slide 27

D3hv / eV Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; I+ KERs interpretations following CH3I# excitation: I+ KER on a D3hv scale for #12 as standard: Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** # 4b I**(6s,2D5/2) I**(6s,2D3/2) I**(6s,2P1/2) I**(6s,2P3/2) I**(6s,2S1/2) 171004; (4b); 335.735 (exp.) D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D1hv / eV Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KERs interpretations following CH3I# excitation: Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KER on a D3hv scale for #12 as standard: # 4b CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I 171003; (4b); 335.735 (exp.) D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay28,Gr28 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short For E(M+,eV) = 3.50e-5 x (pix)2 for 4b

# 4b; Comments/questions: PES: I+ KER: Add more thresholds (CH3(X,0000)) + I**) for more I** CH3+ KER: Are we observing vibrational structure in CH3+ (see slide 95), i.e.: CH3I + (2r+1)hv -> CH3I#; photoexcitations CH3I# -> CH3I+(3/2, ½) + e-; autoionization CH3I+(3/2, ½) + 1hv -> CH3+(X,v1v2v3v4) + I photodissociation CH3I+(3/2,1/2) + 1hv -> CH3+(X,v1v2v3v4) + I* photodissociation ?

# 5:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 5 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 3hv CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) Absorption spectra CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 5 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#5.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

# 6:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 6 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) Absorption spectra CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 6 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#6.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

3hv 2hvr # 6 ? eV PES interpretations following CH3I# excitation: e- KERs e- KERs CH3 + I+ + e; 103491.0874 CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 3hv CH3I# X,1/2 X,3/2 CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) # 6 CH3 + I**(6s,2S1/2) What is all this? Could that be responsible for the broad, high KER I+? ? eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#6I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 7

NB! # 6 I+ KERs interpretations following CH3I# excitation: 171010; (6); 324.5015(exp.)

D3hv / eV Thresholds for CH3+ + I-: CH3+ KER on a D3hv scale CH3+ KERs interpretations following CH3I# excitation: CH3+ KER on a D3hv scale for #12 as standard: Thresholds for CH3+ + I-: CH3+ + I- # 6 171010; (6); 324.5015(exp.) D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay35,Gr38 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

# 6; Comments/questions: PES: See question in PES spectrum / slide 109 I+ KER: Very broad and high KER structure(?) CH3+ KER:

# 7:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 7 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3 + I** I**(6s,2P1/2) Absorption spectra I**(6s,2P3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 7 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#7.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

3hv 2hvr #7 eV PES interpretations following CH3I# excitation: CH3I# e- KERs e- KERs CH3 + I+ + e; 103491.0874 CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 3hv CH3I# X,1/2 X,3/2 CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) #7 CH3 + I**(6s,2P1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#7I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 8

NB! # 7 I+ KERs interpretations following CH3I# excitation: 171005; (7); 317.120(exp.)

D3hv / eV Thresholds for CH3+ + I-: CH3+ KER on a D3hv scale CH3+ KERs interpretations following CH3I# excitation: CH3+ KER on a D3hv scale for #12 as standard: Thresholds for CH3+ + I-: CH3+ + I- # 7 171005; (7); 317.120(exp.) D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay36,Gr39 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

# 8:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 8 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3 + I** I**(6s,2P1/2) Absorption spectra I**(6s,2P3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 8 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#8.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

3hv 2hvr #8 eV PES interpretations following CH3I# excitation: CH3I# e- KERs e- KERs CH3 + I+ + e; 103491.0874 3hv CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 CH3 + I**(6s,2D3/2) 2hvr #8 CH3 + I**(6s,2P1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#8I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 9

NB! #8 I+ KERs interpretations following CH3I# excitation: 171006; (8); 310.1525(exp.)

D3hv / eV Thresholds for CH3+ + I-: CH3+ KER on a D3hv scale CH3+ KERs interpretations following CH3I# excitation: CH3+ KER on a D3hv scale for #12 as standard: Thresholds for CH3+ + I-: CH3+ + I- #8 171006; (8); 310.1525(exp.) D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay37,Gr40 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

# 9:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 9 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3 + I** I**(6s,2P1/2) Absorption spectra I**(6s,2P3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 9 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#9.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

# 10:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 10 CH3 + I+ + e; 103491.0874 3hv CH3 + I** CH3+ + e + I; 98560.91016 I**(6s,2P1/2) Absorption spectra I**(6s,2P3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 10 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#10.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

# 11:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 11 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3 + I** Absorption spectra I**(6s,2P1/2) I**(6s,2P3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 11 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#11.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

PES interpretations following CH3I# excitation: e- KERs CH3+ + I* + e-; 106163.9 CH3 + I+ + e; 103491.0874 e- KERs 3hv CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) #11 What is this? CH3 + I**(6s,2P1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#11I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 10

NB! #11 I+ KERs interpretations following CH3I# excitation: 170925 (11) 294.184944 7p(0,…) # 2E3/2

D3hv / eV Thresholds for CH3+ + I-: CH3+ KER on a D3hv scale CH3+ KERs interpretations following CH3I# excitation: CH3+ KER on a D3hv scale for #12 as standard: Thresholds for CH3+ + I-: CH3+ + I- #11 170925 (11) 294.184944 7p(0,…) # 2E3/2 D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay38,Gr41 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

# 12:

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 12 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3 + I** Absorption spectra I**(6s,2P1/2) I**(6s,2P3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 12 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#12.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

PES interpretations following CH3I# excitation: e- KERs 3hv CH3+ + I* + e-; 106163.9 e- KERs CH3 + I+ + e; 103491.0874 CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) #12 What is this? eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#12I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 11

NB! #12 I+ KERs interpretations following CH3I# excitation: 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $

NB! #12 CH3+ KERs interpretations following CH3I# excitation: 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $

MR-REMPI data: See ..rempi/CH3I/New 2017_2018/Overlapped Spectra.pxp

Study regions: Study regions: 2hv 2hv 1hv 1hv MR-REMPI total 2017-18 71500 70000 2hv 2hv 55500 55500 Slice imaging-experiments 1hv and 2hv(res.)… excitations 41700 35750 35750 35000 32440 32440 1hv 31400 1hv 27750 27750 27750 MR-REMPI from 2012 Low power Excitations 1hv non-resonant Excitation only MR-REMPI from 2012 Low power Excitations 1hv non-resonant Excitation only https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727a.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx; sheet: „various..“

MR-REMPI data for CH3I: See …rempi/CH3I/New 2017_2018/ Overlapped Spectra.pxp:2hv = 62800 – 83400 cm-1 with the exception(gap) of 2hv = 75200 – 76400 cm-1 https://notendur.hi.is/~agust/rannsoknir/rempi/ch3i/OverlappedSpectra.pxp ; Lay0,Gr0

# 2,7,8,11,12: Included; Rydberg states https://notendur.hi.is/agust/rannsoknir/papers/CH3X/cp331-232-07.pdf #0 #9 #12 # 2,7,8,11,12: Included; Rydberg states # 0,9 excluded #2 #8 #11 #7

# 1: Included; Rydberg states https://notendur.hi.is/agust/rannsoknir/papers/CH3X/cp331-232-07.pdf # 1: Included; Rydberg states #1

# 3,6: Included; Rydberg states https://notendur.hi.is/agust/rannsoknir/papers/CH3X/cp331-232-07.pdf #3 #10 #5 # 3,6: Included; Rydberg states # 5,10 excluded #6

# 1,2,3,6,7,8,11,12: Included; Rydberg states # 0,5,9,10, excluded # 4b, included; unknown state # 4a,4c: excluded # 0 1 2 3 5 6 7 8 9 10 11 12 # 4a, 4b 2hv / cm-1 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727a.pxp; Lay1, Gr4

Unknown peak 2hv / cm-1 # 2 3 5 # 4a, 4b,4b # 2 3 5 # 4a, 4b,4b 2hv / cm-1 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727a.pxp; Lay1, Gr4

[1/2]ns n= 6 7 [3/2]np n3 n2 n1 n= 6 7 n3 n2 n1 [3/2]nd [1/2]np n= 5 6 Measured Rydberg states Measured unknown state 2hv / cm-1 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727b.pxp; Lay1, Gr4

[1/2]ns n= 6 7 [3/2]np n3 n2 n1 n= 6 7 n3 n2 n1 [3/2]nd [1/2]np n= 5 6 Measured Rydberg states Measured unknown state 2hv / cm-1 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727b.pxp; Lay1, Gr4

D3hv / eV PES, (on a D3hv scale) 3hv processes : CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) CH3I+(3/2;0..) <- CH3I(X;0..) I+ <- I(3/2) I+ <- I(1/2) CH3+ <- CH3(X) 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 : 171003; (4a) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ f = 3.6e-5 f = 3.104e-5 D3hv / eV For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-190223.pxp ;Lay22,Gr23 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 12 CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 CH3 + I** Absorption spectra I**(6s,2P1/2) I**(6s,2P3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr CH3 + I**(1); 73829.44741 cm-1 1hv CH3 + I*; 26798.95741 CH3 + I; 19195.9874 # 12 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#12.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 12 CH3 + I+ + e; 103491.0874 3hv= 104675 cm-1 CH3+ + e + I; 98560.91016 CH3 + I** DE =30846 cm-1/3.82 eV Absorption spectra I**(6s,2P1/2) I**(6s,2P3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr 2hvr CH3 + I**(1); 73829.44741 cm-1 1hv CH3 + I*; 26798.95741 DE =104675 cm-1/12.98 eV CH3 + I; 19195.9874 # 12 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#12.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

3hv 2hvr # 1 eV PES interpretations following CH3I# excitation: e- KERs CH3+ + e + I; 98560.91016 1hv detection range for I** X,1/2 CH3 + I** X,3/2 3hv e- KERs CH3I# I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; 76945.26047; v2 = 0 I**(6s,2D5/2) 2hvr # 1 CH3 + I**(6s,2S1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#1I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM.pptx; slide 1

3hv 2hvr # 2 eV PES interpretations following CH3I# excitation: e- KERs CH3+ + e + I; 98560.91016 1hv detection range for I** CH3 + I** CH3I# X,1/2 X,3/2 3hv e- KERs I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; 76945.26047; v2 = 0 I**(6s,2D3/2) 2hvr # 2 CH3 + I**(6s,2D5-3/2) CH3 + I**(6s,2S1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#2I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM.pptx; slide 2

3hv 2hvr # 3 eV PES interpretations following CH3I# excitation: e- KERs CH3 + I+ + e; 103491.0874 CH3+ + e + I; 98560.91016 1hv detection range for I** CH3 + I** CH3I# X,1/2 3hv X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) # 3 eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#3I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM.pptx; slide 3

3hv 2hvr # 6 ? eV PES interpretations following CH3I# excitation: e- KERs e- KERs CH3 + I+ + e; 103491.0874 CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 3hv CH3I# X,1/2 X,3/2 CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) # 6 CH3 + I**(6s,2S1/2) What is all this? Could that be responsible for the broad, high KER I+? ? eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#6I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 7

3hv 2hvr #7 eV PES interpretations following CH3I# excitation: CH3I# e- KERs e- KERs CH3 + I+ + e; 103491.0874 CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 3hv CH3I# X,1/2 X,3/2 CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) #7 CH3 + I**(6s,2P1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#7I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 8

3hv 2hvr #8 eV PES interpretations following CH3I# excitation: CH3I# e- KERs e- KERs CH3 + I+ + e; 103491.0874 3hv CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 CH3 + I**(6s,2D3/2) 2hvr #8 CH3 + I**(6s,2P1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#8I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 9

PES interpretations following CH3I# excitation: e- KERs CH3+ + I* + e-; 106163.9 CH3 + I+ + e; 103491.0874 e- KERs 3hv CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) #11 What is this? CH3 + I**(6s,2P1/2) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#11I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 10

PES interpretations following CH3I# excitation: e- KERs 3hv CH3+ + I* + e-; 106163.9 e- KERs CH3 + I+ + e; 103491.0874 CH3+ + I + e-; 98560.912 CH3+ + e + I; 98560.91016 CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; 76945.26047; v2 = 0 CH3+ + I-; 73888.047 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) #12 What is this? eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-180727#12I.pxp; lay0, Gr0 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: various & Ry spectra https://notendur.hi.is/agust/rannsoknir/Crete17/PES-180710KM-180716AK.pptx; slide 11