Source: Signal Processing: Image Communication 64 (2018) 78-88

Slides:



Advertisements
Similar presentations
Reversible Data Hiding Based on Two-Dimensional Prediction Errors
Advertisements

1 Adjustable prediction-based reversible data hiding Authors: Chin-Feng Lee and Hsing-Ling Chen Source: Digital Signal Processing, Vol. 22, No. 6, pp.
Steganography of Reversible Data Hiding Producer: Chia-Chen Lin Speaker: Paul 2013/06/26.
Reversible Image Watermarking Using Interpolation Technique Source: IEEE Transcation on Information Forensics and Security, Vol. 5, No. 1, March 2010 Authors:
1 Reversible data hiding for high quality images using modification of prediction errors Source: The Journal of Systems and Software, In Press, Corrected.
Adjustable prediction-based reversible data hiding Source: Authors: Reporter: Date: Digital Signal Processing, Vol. 22, No. 6, pp , 2012 Chin-Feng.
1 An Efficient VQ-based Data Hiding Scheme Using Voronoi Clustering Authors:Ming-Ni Wu, Puu-An Juang, and Yu-Chiang Li.
1 資訊隱藏技術之研究 The Study of Information Hiding Mechanisms 指導教授: Chang, Chin-Chen ( 張真誠 ) 研究生: Lu, Tzu-Chuen ( 呂慈純 ) Department of Computer Science and Information.
A lossless data hiding scheme based on three- pixel block differences Ching-Chiuan Lin and Nien-Lin Hsueh Pattern Recognition, Vol. 41(4), April 2008 Pages.
1 Reversible visible watermarking and lossless recovery of original images Source: IEEE transactions on circuits and systems for video technology, vol.
Date of download: 6/18/2016 Copyright © 2016 SPIE. All rights reserved. Processing stages of Lena compressed at 0.1bit per pixel: (a) JPEG2000 compressed.
Source: IEEE Signal Processing Letters (Accepted)2016
PERFORMANCE ANALYSIS OF VISUALLY LOSSLESS IMAGE COMPRESSION
(k, n)-Image Reversible Data Hiding
Information Hiding Technology: Current Research and Future Trend
Reversible Data Hiding in Encrypted Images With Distributed Source Encoding Source: IEEE Transactions on Circuits and Systems for Video Technology Vol.26.
Reversible Data Hiding in JPEG Images using Ordered Embedding
Source : Signal Processing, Volume 133, April 2017, Pages
Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering Source: Signal Processing: Image Communication.
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Source :Journal of visual Communication and Image Representation
Reversible data hiding scheme based on significant-bit-difference expansion Sourse: IET Image Processing ( Volume: 11, Issue: 11, ), Pages 1002.
Chair Professor Chin-Chen Chang Feng Chia University
New Framework of Reversible Data Hiding in Encrypted JPEG Bitstreams
Source: J. Vis. Commun. Image R. 41 (2016) 58–64
Source : Signal Processing, vol. 150, pp ,  September 2018
Hiding Data in a Color Palette Image with Hybrid Strategies
Advisor: Chin-Chen Chang1, 2 Student: Yi-Pei Hsieh2
A Restricted Region-based Data-hiding Scheme
Source: Information Sciences, 2018, accpeted.
Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering Source: Signal Processing: Image Communication.
Source : Signal Processing, vol. 126, pp ,  November 2016
Reversible Data Hiding Scheme Using Two Steganographic Images
An efficient reversible image authentication method using improved PVO and LSB substitution techniques Source : Signal Processing: Image Communication,
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Source:. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL
Source: Signal Processing, Vol. 125, pp , August 2016.
An AMBTC compression based data hiding scheme using pixel value adjusting strategy Sourse: Multidimensional Systems and Signal Processing, Volume 29,
An AMBTC compression based data hiding scheme using pixel value adjusting strategy Sourse: Multidimensional Systems and Signal Processing, Volume 29,
Source : Journal of Visual Communication and Image Representation, vol
Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels Source: Journal of Visual Communication and.
Dynamic embedding strategy of VQ-based information hiding approach
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Information Hiding and Its Applications
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Source : Journal of Visual Communication and Image Representation, vol
Sourse: Multimedia Tools and Applications, 2018, pp 1–17
High-fidelity reversible data hiding based on pixel-value-ordering and pairwise prediction-error expansion Source: Journal of Visual Communication and.
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Source: Pattern Recognition Letters 29 (2008)
New Framework for Reversible Data Hiding in Encrypted Domain
Multi-Tier and Multi-Bit Reversible Data Hiding with Contents Characteristics Source : Journal of Information Hiding and Multimedia Signal Processing, Volume.
Source: J. Vis. Commun. Image R. 31 (2015) 64–74
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
Source: IEEE Transactions on multimedia, Vol. 21, No
Unconstraint Optimal Selection of Side Information for Histogram Shifting Based Reversible Data Hiding Source:  IEEE Access. March, doi: /ACCESS
Blind Reversible Authentication Based on PEE and CS Reconstruction
Source: Signal Processing Volume 111 June 2015, Pages
Source: IEEE Transactions on Circuits and Systems,
A Data Hiding Scheme Based Upon Block Truncation Coding
Source: IEEE Access. (2019/05/13). DOI: /ACCESS
Source: Pattern Recognition, Volume 40, Issue 2, February 2007, pp
Pairwise IPVO-Based Reversible Data Hiding
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Dynamic improved pixel value ordering reversible data hiding
Source: Multidim Syst Sign Process, vol. 29, no. 4, pp , 2018
A Restricted Region-based Data-hiding Scheme
Adopting secret sharing for reversible data hiding in encrypted images
Reversible data hiding in encrypted binary images by pixel prediction
Presentation transcript:

Reversible data hiding in encrypted images using adaptive block-level prediction-error expansion Source: Signal Processing: Image Communication 64 (2018) 78-88 Authors: Shuang Yi, Yicong Zhou, Zhongyun Hua Speaker: Qun-Feng Zeng Date: 17/5/2018 1 1

Outline Related Works Proposed Scheme Experiment Results Conclusions 2

Related Works- Block-level prediction error expansion 100 101 99 101 102 99 101 102 99 101 102 99 𝑠=0 𝑠=1 𝑝′ 1,1 =100 𝑒=0 𝑝" 1,1 =101 𝑝′ 1,2 =100 𝑒=1 𝑝" 1,2 =102 𝑝′ 2,1 =100 𝑒=−1 𝑝" 2,1 =99 𝑝′ 2,2 =100 𝑒=1 𝑝" 2,2 =102 𝑝′ 1,1 = 𝑝 1,2 ×0.4+ 𝑝 2,1 ×0.4+ 𝑝 2,2 ×0.2 =100 𝑝′ 2,1 = 𝑝 1,1 ×0.4+ 𝑝 2,2 ×0.4+ 𝑝 1,2 ×0.2 =100 𝑝′ 2,2 = 𝑝 1,2 ×0.4+ 𝑝 2,1 ×0.4+ 𝑝 1,1 ×0.2 =100 𝑝′ 1,2 = 𝑝 1,1 ×0.4+ 𝑝 2,2 ×0.4+ 𝑝 2,1 ×0.2 =100 𝑒= 𝑝 1,1 − 𝑝 ′ 1,1 =100−100=0 𝑒= 𝑝 2,2 − 𝑝 ′ 2,2 =101−100=1 𝑒= 𝑝 2,1 − 𝑝 ′ 2,1 =99−100=−1 𝑒= 𝑝 1,2 − 𝑝 ′ 1,2 =101−100=1 𝑠=1 𝑝" 2,2 =101+1=102 𝑠=0 𝑝" 1,2 =101+1=102 𝑝" 1,1 =100+1=101 𝑝" 2,1 =99+0=99

Proposed Scheme- Adaptive block-level prediction error expansion 𝑟𝑜𝑢𝑛𝑑 𝑎𝑛𝑑 𝑙𝑎𝑦𝑒𝑟𝑠 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤

Proposed Scheme- Adaptive block-level prediction error expansion Complex for sub image B 49 48 54 53 56 57 85 45 46 60 63 49 48 61 54 53 62 64 𝑎𝑣𝑔= 49+48+54+53 4 =51 𝑒 1 =49−51=−2 𝑒 2 =48−51=−3 𝑒 3 =54−51=3 𝑒 4 =53−51=2 57 61 62 64 𝑎𝑣𝑔= 57+61+62+64 4 =61 𝐶 𝐵 = 𝑒=−3 2 ℎ(𝑒) 4𝑆 = 6 8 =0.75 𝑒 1 =57−61=−4 𝑒 2 =61−61=0 𝑒 3 =62−61=1 𝑒 4 =64−61=3

Proposed Scheme- Adaptive block-level prediction error expansion 𝐶 𝐵 =0.75, 𝑟=0.3 𝑇=9

Proposed Scheme- Adaptive block-level prediction error expansion Complex for each pixel 𝐶 𝑏 = max 𝑥 𝑟 , 𝑥 𝑐 , 𝑥 𝑑 −m𝑖𝑛⁡{ 𝑥 𝑟 , 𝑥 𝑐 , 𝑥 𝑑 } 49 48 54 53 𝐶 1,1 = max 𝑝 1,2 , 𝑝 2,1 , 𝑝 2,2 −𝑚𝑖𝑛 𝑝 1,2 , 𝑝 2,1 , 𝑝 2,2 = max 48,54,53 −𝑚𝑖𝑛 48,54,53 =54−48=6 𝐶 1,2 =54−49=5 𝐶 2,1 =53−48=5 𝐶 2,2 =54−48=6 57 61 62 64 𝐶 1,1 =64−61=3 𝐶 1,2 =64−57=7 𝐶 2,1 =64−57=7 𝐶 2,2 =62−57=5

Experiment Results PSNR (dB) Embedding rate (bpp) 0.005 0.02 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 BPEE 62.18 57.87 54.32 51.49 49.75 48.13 45.81 44.32 43.12 41.74 39.65 Lena MED 64.23 58.52 55.50 52.19 49.70 46.81 45.00 43.28 41.82 40.27 37.30 ABPEE 64.89 58.78 55.93 52.71 50.31 48.45 46.27 44.89 43.63 42.30 39.86 64.34 60.11 56.58 53.67 51.90 50.59 49.60 48.60 46.70 45.32 43.03 Airplane 67.25 63.00 58.55 54.54 52.79 50.03 48.43 47.14 43.50 41.13 67.81 63.58 59.27 55.87 53.78 52.43 51.15 49.29 47.61 46.38 43.72 [35] M.J. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS, IEEE Trans. Image Process. 9 (8) (2000) 1309–1324.(MED:median edge dector) 8 8

Experiment Results 9 9 PSNR (dB) Embedding rate (bpp) 0.005 0.02 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 BPEE 60.76 56.39 52.84 49.99 47.71 44.84 43.07 41.19 39.79 38.33 35.93 Barbara MED 63.64 59.28 55.34 51.09 47.42 45.02 42.89 40.69 38.98 37.07 33.88 ABPEE 63.93 59.32 55.60 52.10 48.87 46.32 44.43 42.72 41.10 39.75 36.46 62.39 58.06 54.57 51.58 49.84 48.32 45.85 44.27 42.98 41.53 39.27 Boat 64.40 60.14 55.67 52.56 50.13 47.04 45.40 43.38 41.93 40.24 37.21 65.05 60.70 56.46 53.26 50.82 49.04 46.79 45.21 43.80 42.50 39.56 9 9

Experiment Results 10 10 PSNR (dB) Embedding rate (bpp) 0.005 0.02 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 BPEE 57.19 52.99 49.38 44.10 40.86 38.35 35.90 34.14 32.50 31.01 Baboon MED 60.03 54.85 49.77 44.11 40.18 37.03 34.30 32.32 30.42 ABPEE 59.87 55.02 50.55 45.23 41.62 38.75 36.10 34.31 32.64 31.00 61.56 57.29 53.70 50.82 49.04 Peppers 62.32 57.97 49.54 46.80 44.30 42.17 40.19 62.28 58.57 54.10 51.06 48.57 46.26 44.64 42.61 41.26 40.10 10 10

Experiment Results 11 11

Experiment Results 12 12

Conclusions ABPEE Less payload Good PSNR 14 14