Volume 102, Issue 3, Pages (February 2012)

Slides:



Advertisements
Similar presentations
Probing α-310 Transitions in a Voltage-Sensing S4 Helix
Advertisements

Molecular Analysis of the Interaction between Staphylococcal Virulence Factor Sbi-IV and Complement C3d  Ronald D. Gorham, Wilson Rodriguez, Dimitrios.
Voltage-Dependent Hydration and Conduction Properties of the Hydrophobic Pore of the Mechanosensitive Channel of Small Conductance  Steven A. Spronk,
Probing α-310 Transitions in a Voltage-Sensing S4 Helix
Pedro R. Magalhães, Miguel Machuqueiro, António M. Baptista 
Martin Lignell, Lotta T. Tegler, Hans-Christian Becker 
Structure and Dynamics of the Membrane-Bound Form of Pf1 Coat Protein: Implications of Structural Rearrangement for Virus Assembly  Sang Ho Park, Francesca.
Gil Rahamim, Dan Amir, Elisha Haas  Biophysical Journal 
Volume 83, Issue 3, Pages (September 2002)
Christina E.B. Caesar, Elin K. Esbjörner, Per Lincoln, Bengt Nordén 
Investigating How Peptide Length and a Pathogenic Mutation Modify the Structural Ensemble of Amyloid Beta Monomer  Yu-Shan Lin, Gregory R. Bowman, Kyle A.
Volume 113, Issue 12, Pages (December 2017)
A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion
Volume 106, Issue 12, Pages (June 2014)
Armando J. de Jesus, Ormacinda R. White, Aaron D. Flynn, Hang Yin 
Volume 103, Issue 4, Pages (August 2012)
Taylor Fuselier, William C. Wimley  Biophysical Journal 
Po-Chao Wen, Emad Tajkhorshid  Biophysical Journal 
Volume 103, Issue 12, Pages (December 2012)
Volume 112, Issue 2, Pages (January 2017)
Volume 13, Issue 2, Pages (February 2005)
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Volume 107, Issue 6, Pages (September 2014)
Christian Kappel, Ulrich Zachariae, Nicole Dölker, Helmut Grubmüller 
De Novo Design of Foldable Proteins with Smooth Folding Funnel
Heleen Meuzelaar, Jocelyne Vreede, Sander Woutersen 
A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations  Jianwen A. Feng,
Volume 99, Issue 8, Pages (October 2010)
Volume 109, Issue 5, Pages (September 2015)
Yuan Yang, Chang Shu, Pingwei Li, Tatyana I. Igumenova 
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Haden L. Scott, Justin M. Westerfield, Francisco N. Barrera 
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
Volume 92, Issue 6, Pages (March 2007)
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
Functional Role of Ribosomal Signatures
Volume 92, Issue 1, Pages L07-L09 (January 2007)
Volume 95, Issue 9, Pages (November 2008)
Volume 19, Issue 1, Pages (January 2011)
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Volume 108, Issue 9, Pages (May 2015)
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives
Volume 114, Issue 3, Pages (February 2018)
Volume 103, Issue 10, Pages (November 2012)
The Role of Cholesterol in Driving IAPP-Membrane Interactions
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Allosteric Control of Syntaxin 1a by Munc18-1: Characterization of the Open and Closed Conformations of Syntaxin  Damian Dawidowski, David S. Cafiso 
Volume 22, Issue 7, Pages (July 2014)
Ion-Induced Defect Permeation of Lipid Membranes
Volume 102, Issue 12, Pages (June 2012)
Volume 109, Issue 9, Pages (November 2015)
Volume 110, Issue 11, Pages (June 2016)
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Volume 105, Issue 11, Pages (December 2013)
Volume 95, Issue 7, Pages (October 2008)
Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, III: Molecular Dynamics Simulation Incorporating a.
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Christian Kappel, Ulrich Zachariae, Nicole Dölker, Helmut Grubmüller 
A Delocalized Proton-Binding Site within a Membrane Protein
Volume 96, Issue 3, Pages (February 2009)
Volume 108, Issue 8, Pages (April 2015)
Volume 98, Issue 3, Pages (February 2010)
Presentation transcript:

Volume 102, Issue 3, Pages 613-621 (February 2012) Depth of α-Synuclein in a Bilayer Determined by Fluorescence, Neutron Reflectometry, and Computation  Candace M. Pfefferkorn, Frank Heinrich, Alexander J. Sodt, Alexander S. Maltsev, Richard W. Pastor, Jennifer C. Lee  Biophysical Journal  Volume 102, Issue 3, Pages 613-621 (February 2012) DOI: 10.1016/j.bpj.2011.12.051 Copyright © 2012 Biophysical Society Terms and Conditions

Figure 1 Schematic representation of full-length α-syn, with the seven amphipathic amino acid imperfect repeat regions (KXKEGV) colored in gray. The sequence for N-terminal peptides is also given with the single tryptophan site (W4; bold), lysine residues (italics), and imperfect repeat region (underlined) highlighted. Biophysical Journal 2012 102, 613-621DOI: (10.1016/j.bpj.2011.12.051) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 2 Tryptophan side-chain penetration into the vesicle bilayer. (a) Structure of PC phospholipid with positions of bromines highlighted. (b) Steady-state fluorescence of F4W α-syn (5 μM in 10 mM NaPi, 100 mM NaCl buffer, pH 7.4, 25°C) in the presence of 1:1 POPA/POPC vesicles (black) and 1:1 POPA/POPC vesicles containing 30% bromine-labeled Br9-10PC lipids (gray; lipid/protein molar ratio = 300). The inset shows the relative quenching of F4W steady-state fluorescence in the presence of 1:1 POPA/POPC vesicles containing 30% Br6-7PC, Br9-10PC, and Br11-12PC. Relative quenching is reported as IBr/ILipid, where IBr and ILipid are the integrated steady-state emissions (325–400 nm) in the presence of vesicles with and without brominated lipids, respectively. Error bars represent the SD of the mean for n ≥ 3 independent measurements. Biophysical Journal 2012 102, 613-621DOI: (10.1016/j.bpj.2011.12.051) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 3 Neutron reflection of a sparsely tethered POPA/POPC bilayer lipid membrane (stBLM) and changes resulting from the addition of α-syn. (a) Neutron reflectivity (R/RF) for a POPA/POPC stBLM in the absence and presence of α-syn (3 μM in 10 mM NaPi, 100 mM NaCl, pH 7.4) in H2O and D2O. Continuous distribution model fits to the data are shown as solid lines. Error bars represent the 68% confidence intervals for the measured reflectivity based on Poisson statistics. (b) Top: Schematic of stBLM with additional solid substrate portions (Si, SiOx, Cr, and Au) partially omitted. Bottom: Simplified molecular distributions for each organic interface layer of the POPA/POPC stBLM and α-syn obtained from the best fit of reflectivity data to the continuous distribution model. The dotted line denotes a reference value for area per lipid. Data for the Si substrate and the SiOx, Cr, and Au layer are partially omitted. Biophysical Journal 2012 102, 613-621DOI: (10.1016/j.bpj.2011.12.051) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 4 Comparison of vesicle binding of single Trp containing full-length α-syn (F4W) and N-terminal peptides. Mean wavelength (<λ>) as a function of the lipid/protein ratio (top axis) and lipid concentration (bottom axis) for F4W and α-syn peptides (5 μM α-syn polypeptides, 0–3 mM 1:1 POPA/POPC in 10 mM NaPi, 100 mM NaCl buffer, pH 7.4, 25°C). Fits to the membrane partition equilibrium model are shown as solid lines. Biophysical Journal 2012 102, 613-621DOI: (10.1016/j.bpj.2011.12.051) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 5 Vesicle-induced secondary structural formation of P10 and P15 peptides. CD spectra for P10 (top) and P15 (bottom) as a function vesicle addition (10 μM peptide, 10 mM NaPi, 100 mM NaCl buffer, pH 7.4, 25°C, 0–1.25 mM 1:1 POPA/POPC). Inset: P15 membrane-binding curve generated from the mean residue ellipticity ([Θ]) at 222 nm. A fit to the membrane partition equilibrium model is shown as a solid line. Biophysical Journal 2012 102, 613-621DOI: (10.1016/j.bpj.2011.12.051) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 6 W4 time-resolved anisotropy and bilayer penetration of F4W and N-terminal peptides. (a) Time-resolved anisotropy decays for F4W and α-syn peptides 1–15 (P15), 1–10 (P10), 1–6 (P6), and 1–4 (P4) (dark to light, respectively) in the absence and presence of phospholipid vesicles (5 μM α-syn polypeptides, 0 and 1.5 mM 1:1 POPA/POPC in 10 mM NaPi, 100 mM NaCl buffer, pH 7.4, 25°C). The data represent the average of n ≥ 3 measurements. Single exponential fits to anisotropy decays measured in solution are shown as solid lines. (b) Relative quenching of W4 steady-state fluorescence for F4W and N-terminal peptides in the presence of 1:1 POPA/POPC vesicles containing 30% Br6-7PC, Br9-10PC, and Br11-12PC (lipid/protein ratio = 300). Relative quenching is reported as IBr/ILipid, where IBr and ILipid are the integrated steady-state emissions (325–400 nm) in the presence of vesicles with and without brominated lipids, respectively. Error bars represent the SD of the mean for n ≥ 3 independent measurements. Biophysical Journal 2012 102, 613-621DOI: (10.1016/j.bpj.2011.12.051) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 7 All-atom simulation of the N-terminal 1–15 α-syn peptide (P15) at the bilayer interface. Left: Side view of one of the lowest-energy structures for P15 submerged in a POPA/POPC bilayer. The atomic color scheme for the simulated model is as follows: nitrogen (dark blue), oxygen (red), lipid carbon (gray), lipid oxygen and phosphate (green), lipid choline (light purple), protein carbon (light blue), tryptophan side chain (purple), and helix backbone (blue). Top right: A close-up view of W4 submerged in the bilayer. Bottom right: Free energy as a function of distance of the W4 side chain (purple) and polypeptide (blue) center of gravity from the bilayer center. Biophysical Journal 2012 102, 613-621DOI: (10.1016/j.bpj.2011.12.051) Copyright © 2012 Biophysical Society Terms and Conditions