Volume 23, Issue 24, Pages (December 2013)

Slides:



Advertisements
Similar presentations
Volume 29, Issue 1, Pages (April 2014)
Advertisements

The Salvador-Warts-Hippo Pathway Is Required for Epithelial Proliferation and Axis Specification in Drosophila  Carine Meignin, Ines Alvarez-Garcia, Ilan.
Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis
The DHHC Palmitoyltransferase Approximated Regulates Fat Signaling and Dachs Localization and Activity  Hitoshi Matakatsu, Seth S. Blair  Current Biology 
Loss of Function of MULTICOPY SUPPRESSOR OF IRA 1 Produces Nonviable Parthenogenetic Embryos in Arabidopsis  Anne-Elisabeth Guitton, Frédéric Berger 
Volume 14, Issue 6, Pages (June 2008)
Volume 15, Issue 3, Pages (September 2008)
Volume 23, Issue 24, Pages (December 2013)
Volume 19, Issue 23, Pages (December 2009)
Pericycle Current Biology
Volume 21, Issue 15, Pages (August 2011)
Volume 11, Issue 4, Pages (April 2015)
Volume 24, Issue 19, Pages (October 2014)
Volume 119, Issue 1, Pages (October 2004)
A Feedback Mechanism Controlling SCRAMBLED Receptor Accumulation and Cell- Type Pattern in Arabidopsis  Su-Hwan Kwak, John Schiefelbein  Current Biology 
Volume 17, Issue 12, Pages (June 2007)
Volume 25, Issue 10, Pages (May 2015)
Volume 24, Issue 2, Pages (January 2013)
Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots  Juthamas Chaiwanon, Zhi-Yong Wang 
Transcriptional Activation of Arabidopsis Axis Patterning Genes WOX8/9 Links Zygote Polarity to Embryo Development  Minako Ueda, Zhongjuan Zhang, Thomas.
Zhongjuan Zhang, Elise Tucker, Marita Hermann, Thomas Laux 
Volume 23, Issue 23, Pages R1025-R1026 (December 2013)
Synaptotagmin SYTA Forms ER-Plasma Membrane Junctions that Are Recruited to Plasmodesmata for Plant Virus Movement  Amit Levy, Judy Y. Zheng, Sondra G.
Martin Bringmann, Dominique C. Bergmann  Current Biology 
Volume 18, Issue 21, Pages (November 2008)
Volume 23, Issue 20, Pages (October 2013)
Number of Nuclear Divisions in the Drosophila Blastoderm Controlled by Onset of Zygotic Transcription  Hung-wei Sung, Saskia Spangenberg, Nina Vogt, Jörg.
Yvonne Stahl, René H. Wink, Gwyneth C. Ingram, Rüdiger Simon 
SCHIZORIZA Controls Tissue System Complexity in Plants
Volume 21, Issue 11, Pages (June 2011)
Kaoru Sugimoto, Yuling Jiao, Elliot M. Meyerowitz  Developmental Cell 
Dynamic Control of Auxin Distribution Imposes a Bilateral-to-Radial Symmetry Switch during Gynoecium Development  Laila Moubayidin, Lars Østergaard  Current.
Volume 23, Issue 18, Pages (September 2013)
Volume 19, Issue 1, Pages (July 2010)
FT Protein Acts as a Long-Range Signal in Arabidopsis
Transcription in the Absence of Histone H3.2 and H3K4 Methylation
Volume 25, Issue 16, Pages (August 2015)
Naoyuki Fuse, Kanako Hisata, Alisa L. Katzen, Fumio Matsuzaki 
Volume 10, Issue 2, Pages (February 2006)
Volume 28, Issue 16, Pages e4 (August 2018)
The Centriolar Protein Bld10/Cep135 Is Required to Establish Centrosome Asymmetry in Drosophila Neuroblasts  Priyanka Singh, Anjana Ramdas Nair, Clemens.
Volume 22, Issue 14, Pages (July 2012)
Volume 19, Issue 17, Pages (September 2009)
Stephanie C. Weber, Clifford P. Brangwynne  Current Biology 
Physical Forces Regulate Plant Development and Morphogenesis
Volume 130, Issue 6, Pages (September 2007)
Nicolas Arnaud, Tom Lawrenson, Lars Østergaard, Robert Sablowski 
Rewiring Mid1p-Independent Medial Division in Fission Yeast
Volume 17, Issue 6, Pages (March 2007)
Volume 22, Issue 19, Pages (October 2012)
Volume 15, Issue 3, Pages (September 2008)
Pericycle Current Biology
Volume 115, Issue 5, Pages (November 2003)
Volume 26, Issue 22, Pages (November 2016)
Krzysztof Wabnik, Hélène S. Robert, Richard S. Smith, Jiří Friml 
RPK1 and TOAD2 Are Two Receptor-like Kinases Redundantly Required for Arabidopsis Embryonic Pattern Formation  Michael D. Nodine, Ramin Yadegari, Frans.
Mariana Melani, Kaylene J. Simpson, Joan S. Brugge, Denise Montell 
Volume 21, Issue 12, Pages (June 2011)
BASL Controls Asymmetric Cell Division in Arabidopsis
Peripheral, Non-Centrosome-Associated Microtubules Contribute to Spindle Formation in Centrosome-Containing Cells  U.S. Tulu, N.M. Rusan, P. Wadsworth 
Patterns of Stem Cell Divisions Contribute to Plant Longevity
Sangho Jeong, Travis M. Palmer, Wolfgang Lukowitz  Current Biology 
Volume 18, Issue 7, Pages (April 2008)
Nicole M. Mahoney, Gohta Goshima, Adam D. Douglass, Ronald D. Vale 
Jessica L. Feldman, James R. Priess  Current Biology 
Variation in the Dorsal Gradient Distribution Is a Source for Modified Scaling of Germ Layers in Drosophila  Juan Sebastian Chahda, Rui Sousa-Neves, Claudia Mieko.
TAC-1, a Regulator of Microtubule Length in the C. elegans Embryo
CDC-42 controls early cell polarity and spindle orientation in C
Volume 26, Issue 22, Pages (November 2016)
Arabidopsis PLETHORA Transcription Factors Control Phyllotaxis
Presentation transcript:

Volume 23, Issue 24, Pages 2506-2512 (December 2013) Local Auxin Sources Orient the Apical-Basal Axis in Arabidopsis Embryos  Hélène S. Robert, Peter Grones, Anna N. Stepanova, Linda M. Robles, Annemarie S. Lokerse, Jose M. Alonso, Dolf Weijers, Jiří Friml  Current Biology  Volume 23, Issue 24, Pages 2506-2512 (December 2013) DOI: 10.1016/j.cub.2013.09.039 Copyright © 2013 Elsevier Ltd Terms and Conditions

Current Biology 2013 23, 2506-2512DOI: (10.1016/j.cub.2013.09.039) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 1 PIN7 Is Required for the Apical Auxin Responses in Early Embryos The DR5rev::GFP reporter monitored the auxin response (blue-yellow intensity gradient) in wild-type (WT) (A–C), pin7 (D–F), and pin1/3/4/7 (G–I) in eight-cell (A, D, and G), 16-cell (B, E, and H), and young globular (C, F, and I) embryos. Scale bars represent 10 μm. Embryos are counterstained with Renaissance. Current Biology 2013 23, 2506-2512DOI: (10.1016/j.cub.2013.09.039) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 2 Local Auxin Production in the Suspensor Is Required for Apical Embryo Patterning (A and B) YUC4 (A) and YUC9 (B) are expressed in the suspensor at 16-cell stage. Scale bars represent 10 μm. Embryos are counter-stained with Renaissance. (C–H) WT Seedling (C). Panels (D)–(H) display representative phenotypes observed in yuc3, yuc4, and yuc9 and of the progeny of yuc3/+ yuc9/+ and yuc4/+ yuc9/+, e.g. monocotyledon (D), no cotyledon (E), fused cotyledon (F), tricotyledon (G), and quadricotyledon (H) seedlings. See also Figure S1 and Tables S1 and S2. Current Biology 2013 23, 2506-2512DOI: (10.1016/j.cub.2013.09.039) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 3 Apical Auxin Production Is Required for Basal Patterning (A and B) TAA1 (green) expression in apical protodermal cells coincides with the DR5 auxin response (magenta) at the basal pole (TAA1::GFP-TAA1 DR5::RFPer embryos at eight-cell, A, and 16-cell, B, stages). (C–E) YUC1 (C) and YUC4 (D, surface, and E, middle confocal sections) are expressed in apical protodermal cells from globular and transition stages. The inset in (D) shows a 90°-rotated three-dimensional projection of a z stack series showing the specificity of protodermal YUC4 expression (green dots). (A–D) White arrows indicate sites of expression. Renaissance is used as a counterstain. Scale bars represent 20 μm. (F) YUC8 is expressed in provascular cells at a late globular stage. (G–L) WT embryo at globular (G) and transition (H) stages. Defects (white lines) are observed at globular (I and K) and transition (J and L) stages in wei8 tar1/2 embryos (I and J) and at the transition stage only in yuc1/4/10/11 embryos (K and L). See also Table S3. Current Biology 2013 23, 2506-2512DOI: (10.1016/j.cub.2013.09.039) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 4 Local Auxin Production at Proembryo Apex Is Required for PIN1 Polarization and Basal Auxin Response Maximum (A and B) PIN1 (magenta) was immunolocalized in a wei8 tar1/2 TAA1::GFP-TAA1/+ segregating line. Both rescued (A; with TAA1-GFP expression [green] and polarized PIN1) and nonrescued (B; nonpolar PIN1) embryos are shown at the 16-cell stage. Nuclei are marked by DAPI (blue). (C) Correlation between TAA1 expression and PIN1 polarization in wei8 tar1/2 TAA1::GFP-TAA1/+ embryos. (D–J) DR5 expression pattern in heart-stage embryos of DR5rev::GFP (D), wei8 tar2/+ DR5rev::GFP (E, H, and I), and yuc1/4/8 DR5rev::GFP (F and J). Normal-looking embryos (E and F) and embryos with root-pole-related phenotypes (H–J) are shown. The white box (I) indicates the closeup shown in (H). (K) RPS5A≫TAA1 wei8 tar2/+ didn’t rescue wei8 tar2/+ seedling phenotypes (arrow). (L and M) TAA1 expression pattern in wei8 tar1/2 TAA1::GFP-TAA1 (L) or wei8 tar1/2 35S::GFP-TAA1 (M) roots. Scale bars represent 5 μm (H), 10 μm (A, B, and D), and 20 μm (E, F, I, J, L, and M). A semiquantitative color-coded heatmap is provided (G). See also Figure S2 and Tables S2 and S4. Current Biology 2013 23, 2506-2512DOI: (10.1016/j.cub.2013.09.039) Copyright © 2013 Elsevier Ltd Terms and Conditions