experimental apparatus

Slides:



Advertisements
Similar presentations
CSCI 347 / CS 4206: Data Mining Module 07: Implementations Topic 03: Linear Models.
Advertisements

Evolution strategies Chapter 4. A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies ES quick overview Developed: Germany.
Developments on Shape Optimization at CIMNE October Advanced modelling techniques for aerospace SMEs.
Department of Engineering, Control & Instrumentation Research Group 22 – Mar – 2006 Optimisation Based Clearance of Nonlinear Flight Control Laws Prathyush.
Effective gradient-free methods for inverse problems Jyri Leskinen FiDiPro DESIGN project.
Genetic Algorithms in Materials Processing N. Chakraborti Department of Metallurgical & Materials Engineering Indian Institute of Technology Kharagpur.
Fast Evolutionary Optimisation Temi avanzati di Intelligenza Artificiale - Lecture 6 Prof. Vincenzo Cutello Department of Mathematics and Computer Science.
Evolutionary Computing and the Traveling Salesman
Intro to AI Genetic Algorithm Ruth Bergman Fall 2002.
Crossover Operation with Different Parents Crossover Operation with Identical Parents.
Selecting Informative Genes with Parallel Genetic Algorithms Deodatta Bhoite Prashant Jain.
Intro to AI Genetic Algorithm Ruth Bergman Fall 2004.
Genetic Algorithm What is a genetic algorithm? “Genetic Algorithms are defined as global optimization procedures that use an analogy of genetic evolution.
Coordinative Behavior in Evolutionary Multi-agent System by Genetic Algorithm Chuan-Kang Ting – Page: 1 International Graduate School of Dynamic Intelligent.
Differential Evolution Hossein Talebi Hassan Nikoo 1.
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Quantum-Inspired Genetic Algorithm with Two Supportive Search Schemes (TSSS) and Artificial Entanglement (AE) Chee Ken Choy (Kenny) Intelligent Computer.
Prepared by Barış GÖKÇE 1.  Search Methods  Evolutionary Algorithms (EA)  Characteristics of EAs  Genetic Programming (GP)  Evolutionary Programming.
Evolutionary algorithms
Efficient Model Selection for Support Vector Machines
Evolutionary Algorithms 3.Differential Evolution.
Comparison of Differential Evolution and Genetic Algorithm in the Design of a 2MW Permanent Magnet Wind Generator A.D.Lilla, M.A.Khan, P.Barendse Department.
The Generational Control Model This is the control model that is traditionally used by GP systems. There are a distinct number of generations performed.
1 Effect of Spatial Locality on An Evolutionary Algorithm for Multimodal Optimization EvoNum 2010 Ka-Chun Wong, Kwong-Sak Leung, and Man-Hon Wong Department.
Probabilistic Algorithms Evolutionary Algorithms Simulated Annealing.
Biologically inspired algorithms BY: Andy Garrett YE Ziyu.
2/29/20121 Optimizing LCLS2 taper profile with genetic algorithms: preliminary results X. Huang, J. Wu, T. Raubenhaimer, Y. Jiao, S. Spampinati, A. Mandlekar,
Optimization Problems
Evolution strategies Chapter 4. A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies ES quick overview Developed: Germany.
Particle Swarm Optimization Using the HP Prime Presented by Namir Shammas 1.
Selection and Recombination Temi avanzati di Intelligenza Artificiale - Lecture 4 Prof. Vincenzo Cutello Department of Mathematics and Computer Science.
Constrained Optimization by the  Constrained Differential Evolution with an Archive and Gradient-Based Mutation Tetsuyuki TAKAHAMA ( Hiroshima City University.
APPLICATION OF CLUSTER ANALYSIS AND AUTOREGRESSIVE NEURAL NETWORKS FOR THE NOISE DIAGNOSTICS OF THE IBR-2M REACTOR Yu. N. Pepelyshev, Ts. Tsogtsaikhan,
Genetic Algorithm(GA)
Genetic Algorithm. Outline Motivation Genetic algorithms An illustrative example Hypothesis space search.
Hirophysics.com The Genetic Algorithm vs. Simulated Annealing Charles Barnes PHY 327.
1 A genetic algorithm with embedded constraints – An example on the design of robust D-stable IIR filters 潘欣泰 國立高雄大學 資工系.
Paper Review for ENGG6140 Memetic Algorithms
Optimization Problems
Purposeful Model Parameters Genesis in Simple Genetic Algorithms
An Evolutionary Approach
Differential Evolution (DE) and its Variant Enhanced DE (EDE)
The 2st Chinese Workshop on Evolutionary Computation and Learning
Yong Wang Associate Professor, Ph.D.
Evolutionary Technique for Combinatorial Reverse Auctions
Differential Evolution
Who cares about implementation and precision?
Ec1818 Economics of Discontinuous Change Section 2 [Lectures 5-7]
Kabanikhin S. I., Krivorotko O. I.
Multy- Objective Differential Evolution (MODE)
Subject Name: Operation Research Subject Code: 10CS661 Prepared By:Mrs
Genetic Algorithms, Search Algorithms
Process modelling and optimization aid
IGRASS2011 An Interferometric Coherence Optimization Method Based on Genetic Algorithm in PolInSAR Peifeng Ma, Hong Zhang, Chao Wang, Jiehong Chen Center.
Dynamic Aperture Optimization in CEPC
Particle swarm optimization
Optimization Problems
CSE 589 Applied Algorithms Spring 1999
Evolutionary Computation,
Foundation of Video Coding Part II: Scalar and Vector Quantization
○ Hisashi Shimosaka (Doshisha University)
Boltzmann Machine (BM) (§6.4)
High Resolution Velocity Analysis for Resource Plays
Applications of Genetic Algorithms TJHSST Computer Systems Lab
6 Differential Evolution
Evolution strategies Chapter 4.
Genetic Algorithm Soft Computing: use of inexact t solution to compute hard task problems. Soft computing tolerant of imprecision, uncertainty, partial.
SWARM INTELLIGENCE Swarms
Evolution strategies Chapter 4.
Population Methods.
Presentation transcript:

experimental apparatus A self-optimizing experimental apparatus Ilka Geisel1, Stefan Jöllenbeck1, Jan Mahnke1, Kai Cordes2, Wolfgang Ertmer1, Carsten Klempt1 Institut für Quantenoptik, Leibniz Universität Hannover Institut für Informationsverarbeitung, Leibniz Universität Hannover 10.04.2019

Optimizing the Experiment Why don’t we just do it by hand? [ms] [ms] P 1 P 2 P 3 Arbitrary parameter 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Thorough optimization by hand Number of Dimensions Measurements Time (for 1Hz rep. rate) 1 5 5 s 2 25 25 s 3 125 2 min 4 625 10 min 3 125 52 min 6 15 625 4 h 7 78 125 22 h 8 390 625 4,5 days 9 1 953 125 3 weeks 10 9 765 625 4 month 11 48 828 125 1,5 years 12 244 140 625 8 years 9 1 953 125 3 weeks → Scales exponentially with number of dimensions 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

What search methods are possible? 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Differential Evolution Requirements Optimize multiple correlated experimental parameters Find the global maximum Robust regarding fluctuations Quick search also in high-dimensional parameter space Differential Evolution Storn and Price, 1995 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Differential Evolution Time scales less than quadratically with number of dimensions Scale and units of the parameters are irrelevant Uses one target function Number of atoms Temperature Phase Space Density Position Any other accessible result 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Evolutionary Algorithms Generate first population Measure population Mutate population and generate trial vectors Measure trial vectors Compare one on one to choose new population 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Generating the first generation Dim=2 Current Detuning P0 x0 y0 P1 y1 x1 P2 y2 x2 P3 y3 x3 P4 y4 x4 # Vectors = Dim*5 P5 x5 y5 P6 y6 x6 P7 y7 x7 P8 y8 x8 P9 y9 x9 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Measure first population Cur rent Detuning # Atoms P0 x0 y0 f(P0) P1 y1 x1 f(P1) P2 y2 x2 f(P2) P3 y3 x3 f(P3) P4 y4 x4 f(P4) P5 x5 y5 f(P5) P6 y6 x6 f(P6) P7 y7 x7 f(P7) P8 y8 x8 f(P8) P9 y9 x9 f(P9) 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Ilka Geisel - A self optimizing experimental apparatus Generate Mutants M0 x'0 y'0 M1 y'1 x'1 M2 y'2 x'2 M3 y'3 x'3 M4 y'4 x'4 M5 x'5 y'5 M6 y'6 x'6 M7 y'7 x'7 M8 y'8 x'8 M9 y'9 x'9 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Create a trial population yes Crossover? no T0 x'0 y0 f(T0) T1 y'1 x1 f(T1) T2 y'2 x'2 f(T2) T3 y3 x'3 f(T3) T4 y'4 x'4 f(T4) T5 x5 y'5 f(T5) T6 y6 x'6 f(T6) T7 y'7 x7 f(T7) T8 y'8 x8 f(T8) T9 y9 x'9 f(T9) 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Ilka Geisel - A self optimizing experimental apparatus Compare one on one Population Generation 1 Trial vectors Generation 1 Population Generation 2 P0 f(P0) T0 f(T0) T0 f(T0) P1 f(P1) T1 f(T1) T1 f(T1) P2 f(P2) T2 f(T2) T2 f(T2) P3 f(P3) T3 f(T3) P3 f(P3) P4 f(P4) T4 f(T4) P4 f(P4) P5 f(P5) T5 f(T5) T5 f(T5) P6 f(P6) T6 f(T6) P6 f(P6) P7 f(P7) T7 f(T7) P7 f(P7) P8 f(P8) T8 f(T8) T8 f(T8) P9 f(P9) T9 f(T9) P9 f(P9) 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Visualization in 9 Dimensions 2 Currents [-140,140] A 1 Detuning [-90,0] MHz 3 Currents [0,140] A 1 Current [-140,0] A 2 Currents [-140,140] A Blue: Trial Vectors, Orange: Population Vectors 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Visualization in 9 Dimensions 2 Currents [-140,140] A 1 Detuning [-90,0] MHz 3 Currents [0,140] A 1 Current [-140,0] A 2 Currents [-140,140] A Blue: Trial Vectors, Orange: Population Vectors 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Optimization in the experiment 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Optimizing a MOT in 9 Dimensions Average of Population Average of Trials 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Ilka Geisel - A self optimizing experimental apparatus Human vs. DE 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Ilka Geisel - A self optimizing experimental apparatus Add-ons Hard boundaries Force mutants inside boundaries Different approaches show different behavior Elite Use only upper X% as parent vectors Consider speed against accuracy Finite Lifetime If a trial vector survived X times, redo the measurement Slows but helps consider experimental noise 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Ilka Geisel - A self optimizing experimental apparatus Summary Little computing power required Easy implementation (i.e. into LabView) Finds the global optimum We optimized up to 13 parameters Better than human Thank you for your attention! 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Ilka Geisel - A self optimizing experimental apparatus Pseudo Code // initialize… do // generate a trial population { for (i=0; i<Np; i++) // r0!=r1!=r2!=i { do r0=floor(rand(0,1)*Np); while (r0==i); do r1=floor(rand(0,1)*Np); while (r1==i or r1==r0); do r2=floor(rand(0,1)*Np); while (r2==i or r2==r1 or r2==r1); jrand=floor(D*rand(0,1)); for (j=0; j<D; j++) // generate one trial vector { if (rand(0,1) <=Cr or j==jrand) // use mutant { tj,i = pj,ro+F*(pj,r1-p,r2); // check for out of bounds? } else { tj,i=pj,i; // use old population // select the population of the next generation for (i=0; i<Np; i++) { if ( f(ti) >= f(pi)) pi=ti; } while (termination criterion not met); 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

Optimizing a Trap in 5 Dimensions 10.04.2019 Ilka Geisel - A self optimizing experimental apparatus

What we optimized so far Dimensions Samples per Generation Generations Before After MOT 9 9*10 = 90 417 1,69*1010 2,05*1010 MOT II 12 12*10 = 120 330 6,27*108 7,3*108 Molasses 2 2*10 = 20 15 8,15*108 Optical pumping 7 7*5 = 35 50 1,24*109 Magnetic trap 1,75*109 10.04.2019 Ilka Geisel

How does that compare? Number of Dimensions Measurements Number of Measurements with DE 2 25 300 7 78 125 1 750 9 1 953 125 37 530 12 244 140 625 39 600 10.04.2019 Ilka Geisel