Roberge-Weiss transition endpoints with Wilson and improved KS quarks

Slides:



Advertisements
Similar presentations
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Advertisements

A method of finding the critical point in finite density QCD
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
The Phase Diagram of Nuclear Matter Oumarou Njoya.
2+1 Flavor Polyakov-NJL Model at Finite Temperature and Nonzero Chemical Potential Wei-jie Fu, Zhao Zhang, Yu-xin Liu Peking University CCAST, March 23,
Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions WHOT-QCD Collaboration: S.
Lattice QCD (INTRODUCTION) DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005.
H unting for the C onformal W indow in a foggy day … in a foggy day … Elisabetta Pallante Rijksuniversiteit Work in collaboration.
Thermal 2007T.Umeda (Tsukuba)1 Constant mode in charmonium correlation functions Takashi Umeda This is based on the Phys. Rev. D (2007) Thermal.
Towards θvacuum simulation in lattice QCD Hidenori Fukaya YITP, Kyoto Univ. Collaboration with S.Hashimoto (KEK), T.Hirohashi (Kyoto Univ.), K.Ogawa(Sokendai),
QCD Thermodynamics: Taylor expansion and imaginary chemical potential Rossella Falcone, Edwin Laermann, Maria Paola Lombardo Extreme QCD June.
Determination of QCD phase diagram from regions with no sign problem Yahiro ( Kyushu University ) Collaborators: Y. Sakai, T. Sasaki and H. Kouno.
N F = 3 Critical Point from Canonical Ensemble χ QCD Collaboration: A. Li, A. Alexandru, KFL, and X.F. Meng Finite Density Algorithm with Canonical Approach.
CONFINEMENT WITHOUT A CENTER: THE EXCEPTIONAL GAUGE GROUP G(2) M I C H E L E P E P E U n i v e r s i t y o f B e r n (S w i t z e r l a n d)
Hagedorn states and Thermalization DM2010, High Density Nuclear Matter, Stellenbosch, South Africa (courtesy L. Ferroni)
A status report of the QCDSF N f =2+1 Project Yoshifumi Nakamura (NIC/DESY) for the QCDSF collaboration Lattice Regensburg Aug. 3, 2007.
Phase Fluctuations near the Chiral Critical Point Joe Kapusta University of Minnesota Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica, January 2010.
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Kenji Morita 21 May 2011Three Days on Quarkyonic Poland1 Probing deconfinement in a chiral effective model with Polyakov loop from imaginary.
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
Non-equilibrium critical phenomena in the chiral phase transition 1.Introduction 2.Review : Dynamic critical phenomena 3.Propagating mode in the O(N) model.
Imaginary Chemical potential and Determination of QCD phase diagram
Quark deconfinement and symmetry Hiroaki Kouno Dept. of Phys., Saga Univ. Collaboration with K. Kashiwa, Y. Sakai, M. Yahiro ( Kyushu. Univ.) and M. Matsuzaki.
Nf=12 QCD の 非摂動的 running coupling 伊藤 悦子 ( 工学院大学 ) arXiv: and Work in progress A01 KEK 2010/2/15.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Higher moments of net-charge multiplicity distributions at RHIC energies in STAR Nihar R. Sahoo, VECC, India (for the STAR collaboration) 1 Nihar R. Sahoo,
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
The Polyakov loop and charge fluctuations and QCD critical points Deconfinement in SU(N) pure gauge theory and Polyakov loop fluctuations Modelling deconfinement.
Komaba seminarT.Umeda (Tsukuba)1 A study of charmonium dissociation temperatures using a finite volume technique in the lattice QCD T. Umeda and H. Ohno.
Outline 1.Critical short-time dynamics ― hot start & cold start ― 2. Application to lattice gauge theory ― extract critical exponents ― 3. Summary Short-Time.
Quark matter meets cold atoms 474th International Wilhelm und Else Heraeus Seminar on Strong interactions: from methods to structures, Bad Honnef, Feb.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
GCOE-PD seminarTakashi Umeda (YITP, Kyoto Univ.)1 有限温度格子QCDの 新しいアプローチの可能性 Takashi Umeda (YITP, Kyoto Univ.) for WHOT-QCD Collaboration GCOE-PD seminar,
Lattice QCD at high temperature Péter Petreczky Physics Department and RIKEN-BNL EFT in Particle and Nuclear Physics, KITPC, Beijing August 19, 2009 Introduction.
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
Probing QCD Phase Diagram with Fluctuations of conserved charges Krzysztof Redlich University of Wroclaw & EMMI/GSI QCD phase boundary and its O(4) „scaling”
RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE Lattice QCD at non-zero Temperature and Density Akira Ukawa Deputy Director, RIKEN AICS, Japan 18 August.
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
Why Extra Dimensions on the Lattice? Philippe de Forcrand ETH Zurich & CERN Extra Dimensions on the Lattice, Osaka, March 2013.
Lattice QCD at finite density
Lattice 2006 Tucson, AZT.Umeda (BNL)1 QCD thermodynamics with N f =2+1 near the continuum limit at realistic quark masses Takashi Umeda (BNL) for the RBC.
BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken x Exploring QCD Phase Diagram in Heavy Ion Collisions Krzysztof Redlich University of Wroclaw.
Large Scale Simulations of Lattice Gauge Theory: Key NSF Project of China and Recent Developments Zhongshan (Sun Yat-Sen) University, Guangzhou, China.
The QCD phase diagram and fluctuations Deconfinement in the SU(N) pure gauge theory and Polyakov loop fluctuations Polyakov loop fluctuations in the presence.
Lattice QCD and the strongly interacting matter Péter Petreczky Physics Department Zimányi School 2012 and Ortvay Colloquium, December 6, 2012, ELTE, Budapest.
PHENIX Results from the RHIC Beam Energy Scan Brett Fadem for the PHENIX Collaboration Winter Workshop on Nuclear Dynamics 2016.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Interplay between chiral and deconfinement phase transitions Hot and Cold Baryonic Matter, Budapest, Aug 15-19, 2010 Mei Huang IHEP, CAS TPCSF, CAS.
The QCD EoS from simulations on BlueGene L Supercomputer at LLNL and NYBlue Rajan Gupta T-8, Los Alamos National Lab Lattice 2008, College of William and.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
QCD on Teraflops computerT.Umeda (BNL)1 QCD thermodynamics on QCDOC and APEnext supercomputers QCD thermodynamics on QCDOC and APEnext supercomputers Takashi.
Matter-antimatter coexistence method for finite density QCD
Lattice QCD at finite temperature Péter Petreczky
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
Heavy Quark Correlations and J/ψ Production in Heavy Ion Collisions 2014 REU Presentation Presenter: Ray Niazi Mentor: Dr. Ko.
Raju Venugopalan Brookhaven National Laboratory
Ziqiang Zhang Huazhong Normal University
Finite Density Simulation with the Canonical Ensemble
Properties of the Quark-Gluon Plasma
Aspects of the QCD phase diagram
Locating critical point of QCD phase transition by finite-size scaling
Introduction Results Methods Conclusions
QCD thermodynamics on QCDOC Machine
Yang-Lee Zeros from Canonical Partition Functions
Searching for the Conformal Window
Lattice QCD study of charmonium dissociation temperatures
Presentation transcript:

Roberge-Weiss transition endpoints with Wilson and improved KS quarks Faculty of Science, Jiangsu University Liang-Kai Wu

Outline 1) Roberge-Weiss transition endpoint 2)Simulation with Wilson fermion formulation 3)Symanzik improved gauge action and Asqtad fermion action 4)Results with improved action

RHIC (Relativistic Heavy Ion Collider) LHC (Large Hadron Collider) Evolution of Universe Compact stars RHIC (Relativistic Heavy Ion Collider) LHC (Large Hadron Collider) SPS (Super Proton Synchrotron)

一 Roberge-Weiss transition endpoints Partition function: Pure gauge theory: Z(3) symmetry QCD: Z(3) symmetry is broken QCD: real chemical potential imaginary chemical potential, Z(3) is restored With imaginary chemical potential,system is periodic, partition function is even function of chemical potential Nucl.phys.,B275,734(1986)

At high temperature :first order transition Critical value: At high temperature :first order transition At low temperature : crossover First order crossover Chemical potential increases Temperature increases Different Z(N) sectors

Second order line Triple line Tricritical point

Second order line Tricritical point Triple line Figure from PRD 90,074030

二 Simulation with Wilson fermions partition function: Gauge action: ,而 Fermion action: Fermion matrix M:

Imaginary part of Polyakov loop taken as order parameter (H.Kouno,et al., J.Phys.G36 ,115010 (2009)). Polyakov loop: Susceptibility: Susceptibility scaling behaviour: C.Bonati, etal., Phys.Rev., D83,054505(2011) Binder cumulant : Binder cumulant scaling behaviour : P.de Forcrand and O.Philipsen, Phys.Rev.Lett., 105,152001(2010)

0.155 0.160 0.165 0.168 0.170 0.175 0.180 0.190 0.198

0.020 0.040 0.060 0.070 0.080 0.100 0.120

3D Ising 0.6301(4) 1.2372(5) 1.963 Tricritical 0.5 1 2 First order 0.3 1 3 A.Pelissetto and E.Vicari, Phys.Rep.,368,549(2002) crossover triple point second order tricritical point 3 1.5 1.604 2 P.de Forcrand and O.Philipsen, Phys.Rev.Lett., 105,152001(2010)

0.020 0.040 0.060 0.070 0.080 0.100 0.120 0.140 0.155 0.160 0.165 0.168 0.170 …. Second order points Tricritical point Triple points Triple points O.Philipsen and C.Pinke, PRD 89,094504(2014)

Scenario 2 first order Scenario 1 second order Triple line Tricritical point Tricritical point Second order line Scenario 2 first order Scenario 1 second order

三 Improved action Error of lattice spcaing: A.Bazavov, et al., Rev.Mod.Phys.,82 1349(2010) M,Luscher and P.Weisz, Phys.lett.,B158,250(1985), Commun.math.phys.,97,59(1985); Z.Hao, et al., PRD, 76,034507(2007)

1 -1/24 1/16 1/64 1/384 -1/8 A.Bazavov, et al., Rev.Mod.Phys.,82 1349(2010) and Refs. thereof

RHMC (rational hybrid Monte Carlo algorithm) : M.A.Clark and A.D.Kennedy, PRD 75,011502(2007);PRL,98,051601(2007) Heat baths: Fermion action: Molecular dynamic:

am 0.024 0.026 0.038 0.040 0.050 0.060 0.070

am=0.050 0.060 am=0.038 0.040 0.070

Tricritical point 3D Ising 0.6301(4) 1.2372(5) 1.963 First order 0.3 1 3 am 0.024 0.026 0.038 0.040 0.050 0.060 0.070 Tricritical point

Discussion: Data points are not enough Two lattice volumes some intersections are obtained from two spatial volumes 3) From 0.024 to 0.026,change of critical index is rapid 4) Region between Tricritical points is narrow. arXiv:1612.03384 0.043(5) 0.72(8) C.Bonati, etal., PRD 83,054505(2011) 0.07<am<0.3 0.5<am<1.5 P.de Forcran and O.Philipsen, PRL,105,152001(2010)

谢谢大家! Thanks to Philippe de Forcrand, Chuan Liu And Wang Qiong, Zhao Liu in Supercomputer Center in Wuxi 谢谢大家!

3D Ising 0.6301(4) 1.2372(5) 1.963 Tricritical 0.5 1 2 First order 0.3 1 3 A.Pelissetto and E.Vicari, Phys.Rep.,368,549(2002) crossover triple point second order tricritical point 3 1.5 1.604 2 P.De Forcrand and O.Philipsen, Phys.Rev.Lett., 105,152001(2010)

Z(3) 相变 在虚化学势下 温度增大 虚化学势增大

温度增大 Triple line

First order 温度增大 化学势增大 crossover Tricritical point Tricritical point

5) Z(3) 相变 在虚化学势下 不同的Z(N)区 温度增大 曲线的表达式的形式 ? 虚化学势增大

Roberge-Weiss相变 配分函数: 纯规范场: Z(3) 对称性 QCD: Z(3) 对称性破缺 高温下:一阶相变 低温下:crossover Critical value: