Geometry/Trig Name: __________________________ Parallel Lines and Angles Practice – Page 1 Date: ___________________________ Section 1 – Identify each pair of angles. If there is no relationship between the angles, write none. 1 2 9 10 3 4 11 12 5 6 13 14 7 8 15 16 1.) Ð1 and Ð8 _________________________________________________________ 2.) Ð13 and Ð8 ________________________________________________________ 3.) Ð1 and Ð4 _________________________________________________________ 4.) Ð3 and Ð6 _________________________________________________________ 5.) Ð6 and Ð11 ________________________________________________________ 6.) Ð5 and Ð13 ________________________________________________________ 7.) Ð5 and Ð9 _________________________________________________________ 8.) Ð7 and Ð14 ________________________________________________________ 9.) Ð11 and Ð13 _______________________________________________________ 10.) Ð9 and Ð16 _______________________________________________________ 11.) Ð7 and Ð10 _______________________________________________________ 12.) Ð13 and Ð16 _______________________________________________________ 13.) Ð12 and Ð13 _______________________________________________________ 14.) Ð16 and Ð12 ______________________________________________________
Parallel Lines and Angles Practice – Page 2 Part 2 – Use the diagram below to complete each exercise. All justifications must be written in a formal matter. Example – It would be unacceptable to write “Corresponding Ðs are @.” You must instead write, “If lines are parallel, then corresponding angles are congruent.” 1.) Ð3 @ Ð7 Justification: _________________________________ __________________________________________________________________________________________________________________________________________ 2.) Ð3 and Ð5 are supplementary Justification: ___________________________________ __________________________________________________________________________________________________________________________________________ a // b 1 2 b 3 4 5 6 a 7 8 3.) Ð4 @ Ð5 Justification: ___________________________________________________________ _____________________________________________________________________. 4.) Ð1 @ Ð8 5.) mÐ7 + mÐ8 = 180 6.) Ð5 @ Ð8 7.) Ð2 and Ð8 are supplementary
Parallel Lines and Angles Practice – Page 3 Part 3 – Use the diagram to complete each algebra connection problem. You must show all work. 1. m1 = x +3 and m5 = 2x – 20. a // b 1 2 What type of angles are they? _________________________ Congruent or supplementary? __________________________ b 3 4 5 6 a 7 8 x = ________ mÐ1 = _______ mÐ5 = ________ mÐ6 = ___________ mÐ8 = __________ 2. m3 = 56 and m6 = 2x – 4. 3. m2 = 3x – 10 and m7 = 2x + 16 What type of angles are they? _________________ Congruent or supplementary? __________________ What type of angles are they? _________________ Congruent or supplementary? __________________ x = ______ mÐ3 = _________ mÐ6 = ________ mÐ5 = _________ mÐ7 = ________ x = ______ mÐ2 = _________ mÐ7 = ________ mÐ1 = _________ mÐ4 = ________ 4. m4 = 3x – 8 and m6 = x – 4 5. m1 = 2x – 6 and m7 = x - 3 What type of angles are they? _________________ Congruent or supplementary? __________________ What type of angles are they? _________________ Congruent or supplementary? __________________ x = ______ mÐ4 = _________ mÐ6 = ________ mÐ7 = _________ mÐ8 = ________ x = ______ mÐ1 = _________ mÐ7 = ________ mÐ5 = _________ mÐ6 = ________
Geometry/Trig Name: _________________________ Practice: What two lines are parallel (if any) according to the given information? n REASONS: A. If corresponding angles are congruent, then lines are parallel. B. If alternate interior angles are congruent, then lines are parallel. C. If alternate exterior angles are congruent, then lines are parallel. D. If same side interior angles are supplementary, then lines are parallel. E. If same side exterior angles are supplementary, then lines are parallel. l m 17 11 10 12 18 j 9 8 14 6 13 2 1 3 4 5 k 19 7 15 16 20 GIVEN Parallel Lines Reason Ex. mÐ7 = mÐ8 j // k A 1. mÐ7 = mÐ4 ___________ ___________ 2. mÐ5 + mÐ6 = 180° ___________ ___________ 3. mÐ8 = mÐ1 ___________ ___________ 4. mÐ10 + mÐ7 = 180° ___________ ___________ 5. mÐ1 = mÐ7 ___________ ___________ 6. mÐ8 + (mÐ2 + mÐ3) = 180° ___________ ___________ 7. mÐ1 = mÐ4 ___________ ___________ 8. mÐ1 + mÐ2 + mÐ3 = 180° ___________ ___________ 9. mÐ17 = mÐ20 ___________ ___________ 10. mÐ3 = mÐ14 ___________ ___________ 11. mÐ2 = mÐ13 ___________ ___________ 12. mÐ11 = mÐ16 ___________ ___________
Geometry/Trig Name: _________________________ USING Parallel Line Proofs – Page 1 Date: __________________________ 1. Given: g // h and s // t Prove: Ð2 @ Ð15 1 2 9 10 g 3 4 11 12 5 6 13 14 h 7 8 15 16 t s Statements Reasons 2. Given: k // m Prove: Ð1 is supplementary to Ð7 2 6 m 1 5 4 8 k 3 7 Statements Reasons t
C B 3 2 1 A D E USING Parallel Line Proofs – Page 2 3. Given: CD // BE; Ð3 @ Ð1 Prove: BE bisects ÐDBA C B 3 2 1 A D E Statements Reasons 4. Given: AD // BC; Ð1 @ Ð2 Prove: AB bisects ÐCAD C 1 2 A B 3 Statements Reasons D
g h t s PROVING Parallel Line Proofs – Page 3 5. Given: Ð4 @ Ð13; t // s Prove: h // g 1 2 9 10 g 3 4 11 12 5 6 13 14 h 7 8 15 16 t s Statements Reasons 6. Given: AB bisects ÐCAD; Ð1 @ Ð2 Prove: AD // BC C 1 2 A B 3 Statements Reasons D
PROVING Parallel Line Proofs – Page 4 7. Given: Ð1 @ Ð8 Prove: Ð5 @ Ð7 2 6 m 1 5 4 8 3 7 k Statements Reasons t 8. Given: c // d; Ð1 and Ð14 are supplementary Prove: a // b 1 2 9 10 a 3 4 11 12 5 6 13 14 b 7 8 15 16 Statements Reasons c d
Parallel Line Proofs – Page 5 9. Given: AB // CD; Ð2 @ Ð6 Prove: BC // DE A D B 2 1 3 4 5 7 6 C E Statements Reasons 10. Given: BC // DE; Ð2 @ Ð6 Prove: AB // CD A D B 2 1 3 4 5 7 6 C E Statements Reasons
Parallel Line Proofs – Page 6 11. Given: BE bisects ÐDBA; Ð3 @ Ð1 Prove: CD // BE C B 3 2 1 A D E Statements Reasons 12. Given: Ð1 @ Ð2; Ð4 @ Ð5 Prove: Ð3 @ Ð6 HINT: First prove PQ // RS, then you should just need one more step to get to this prove. P R 3 4 T 2 5 6 S 1 Statements Q Reasons