Geometry/Trig Name: __________________________

Slides:



Advertisements
Similar presentations
Chapter 3.3 Notes: Prove Lines are Parallel
Advertisements

Chapter 3.2 Notes: Use Parallel Lines and Transversals
Section 3-2: Proving Lines Parallel Goal: Be able to use a transversal in proving lines parallel. Warm up: Write the converse of each conditional statement.
Parallel Lines.
Parallel Lines & Transversals & Angles
PARALLEL LINES and TRANSVERSALS.
Geometry/Trig 2 Name: __________________________
Lesson 11.1 Angle and Line Relationships
PROVING LINES PARALLEL. CONVERSE OF  … Corresponding Angles Postulate: If the pairs of corresponding angles are congruent, then the lines are parallel.
3.3 Proving Lines Parallel Converse of the Corresponding Angles Postulate –If two lines and a transversal form corresponding angles that are congruent,
3.2 Proving Lines Parallel
Prove Lines are Parallel
Geometry Section 3.2 Use Parallel Lines and Transversals.
Geometry/Trig 2Name: __________________________ Unit 3 Review Packet ANSWERSDate: ___________________________ Section I – Name the five ways to prove that.
3-3 Proving Lines Parallel
LINES CUT BY A TRANSVERSAL. 3Geometry Lesson: Proving Lines are Parallel.
Warm-Up Classify the angle pair as corresponding, alternate interior, alternate exterior, consecutive interior or.
Section 3-3 Proving Lines Parallel – Day 1, Calculations. Michael Schuetz.
Section 3.2 Parallel Lines and Transversals Learning Goal: Students will identify congruent angles associated with parallel lines and transversals and.
Transversal t intersects lines s and c. A transversal is a line that intersects two coplanar lines at two distinct points.
 Students will be able to ◦ Determine whether two lines are parallel ◦ Write flow proofs ◦ Define and apply the converse of the theorems from the previous.
Interior and exterior angles. Exterior and interior angles are supplementary.
Section V - Proofs StatementsReasons J GK I H 1. Given: GK bisects  JGI; m  3 = m  2 Prove: GK // HI Given Given Geometry/Trig.
3-2 Properties of Parallel Lines. 2) Postulate 10: Corresponding Angles Postulate If two parallel lines are cut by a transversal then the pairs of corresponding.
Station 1 – Provide a justification (definition, property, postulate, or theorem) for each statement. D 1.) If BH ^ DC, then ÐDCH is a right angle. 2.)
Geometry/Trig Name: __________________________
3.4 Parallel Lines and Transversals
Geometry 3-2 Angles and Algebra
Parallel Lines and Angle Relationships
Proving Lines Parallel
Proving Lines are Parallel
3-2 Properties of Parallel Lines
Proving Lines are Parallel
Parallel Lines and Triangles
Lesson 3.1 AIM: Properties of Parallel Lines
Section 2-5: Perpendicular Lines & Proofs
: Parallelograms Objectives:
3.5 Proving Lines Parallel
3.3 Parallel Lines & Transversals
Chapter 3.2 Notes: Use Parallel Lines and Transversals
Terra Nova Practice Lesson 17
Entry Task Pick one of the theorems or the postulate from the last lesson and write the converse of that statement. Same Side Interior Angles Postulate.
3.2 Proofs and Perpendicular Lines
3-2 Angles & Parallel Lines
Warm Up State the converse of each statement.
Unit 2 – Similarity, Congruence, and Proofs
Geometry/Trig Name: __________________________
3.3: Proving Lines parallel
3.2 Proofs and Perpendicular Lines
Geometry/Trig Name: __________________________
Parallel Lines and a Transversal Line
Parallel Lines and a Transversal Line
3.3 Parallel Lines & Transversals
Transversals and Parallel Lines
 
Parallel Lines and Transversals
PARALLEL LINES Cut by a transveral.
Module 14: Lesson 2 Transversals and Parallel Lines
3.2 – Proving Lines Parallel
Geometry Agenda 1. ENTRANCE 2. go over practice
Proving Lines Are Parallel
Angle Relationships with Parallel Lines
Section 3-3 Proving Lines Parallel, Calculations.
Parallel Lines and Transversals
3.2 Notes: Use Parallel Lines and Transversals
Parallel and Perpendicular Lines
Parallel lines & algebra
Angles and Parallel Lines
Properties of Parallel Lines
Geometry/Trig Name: _________________________
Presentation transcript:

Geometry/Trig Name: __________________________ Parallel Lines and Angles Practice – Page 1 Date: ___________________________ Section 1 – Identify each pair of angles. If there is no relationship between the angles, write none. 1 2 9 10 3 4 11 12 5 6 13 14 7 8 15 16 1.) Ð1 and Ð8 _________________________________________________________ 2.) Ð13 and Ð8 ________________________________________________________ 3.) Ð1 and Ð4 _________________________________________________________ 4.) Ð3 and Ð6 _________________________________________________________ 5.) Ð6 and Ð11 ________________________________________________________ 6.) Ð5 and Ð13 ________________________________________________________ 7.) Ð5 and Ð9 _________________________________________________________ 8.) Ð7 and Ð14 ________________________________________________________ 9.) Ð11 and Ð13 _______________________________________________________ 10.) Ð9 and Ð16 _______________________________________________________ 11.) Ð7 and Ð10 _______________________________________________________ 12.) Ð13 and Ð16 _______________________________________________________ 13.) Ð12 and Ð13 _______________________________________________________ 14.) Ð16 and Ð12 ______________________________________________________

Parallel Lines and Angles Practice – Page 2 Part 2 – Use the diagram below to complete each exercise. All justifications must be written in a formal matter. Example – It would be unacceptable to write “Corresponding Ðs are @.” You must instead write, “If lines are parallel, then corresponding angles are congruent.” 1.) Ð3 @ Ð7 Justification: _________________________________ __________________________________________________________________________________________________________________________________________ 2.) Ð3 and Ð5 are supplementary Justification: ___________________________________ __________________________________________________________________________________________________________________________________________ a // b 1 2 b 3 4 5 6 a 7 8 3.) Ð4 @ Ð5 Justification: ___________________________________________________________ _____________________________________________________________________. 4.) Ð1 @ Ð8 5.) mÐ7 + mÐ8 = 180 6.) Ð5 @ Ð8 7.) Ð2 and Ð8 are supplementary

Parallel Lines and Angles Practice – Page 3 Part 3 – Use the diagram to complete each algebra connection problem. You must show all work. 1. m1 = x +3 and m5 = 2x – 20. a // b 1 2 What type of angles are they? _________________________ Congruent or supplementary? __________________________ b 3 4 5 6 a 7 8 x = ________ mÐ1 = _______ mÐ5 = ________ mÐ6 = ___________ mÐ8 = __________ 2. m3 = 56 and m6 = 2x – 4. 3. m2 = 3x – 10 and m7 = 2x + 16 What type of angles are they? _________________ Congruent or supplementary? __________________ What type of angles are they? _________________ Congruent or supplementary? __________________ x = ______ mÐ3 = _________ mÐ6 = ________ mÐ5 = _________ mÐ7 = ________ x = ______ mÐ2 = _________ mÐ7 = ________ mÐ1 = _________ mÐ4 = ________ 4. m4 = 3x – 8 and m6 = x – 4 5. m1 = 2x – 6 and m7 = x - 3 What type of angles are they? _________________ Congruent or supplementary? __________________ What type of angles are they? _________________ Congruent or supplementary? __________________ x = ______ mÐ4 = _________ mÐ6 = ________ mÐ7 = _________ mÐ8 = ________ x = ______ mÐ1 = _________ mÐ7 = ________ mÐ5 = _________ mÐ6 = ________

Geometry/Trig Name: _________________________ Practice: What two lines are parallel (if any) according to the given information? n REASONS: A. If corresponding angles are congruent, then lines are parallel. B. If alternate interior angles are congruent, then lines are parallel. C. If alternate exterior angles are congruent, then lines are parallel. D. If same side interior angles are supplementary, then lines are parallel. E. If same side exterior angles are supplementary, then lines are parallel. l m 17 11 10 12 18 j 9 8 14 6 13 2 1 3 4 5 k 19 7 15 16 20 GIVEN Parallel Lines Reason Ex. mÐ7 = mÐ8 j // k A 1. mÐ7 = mÐ4 ___________ ___________ 2. mÐ5 + mÐ6 = 180° ___________ ___________ 3. mÐ8 = mÐ1 ___________ ___________ 4. mÐ10 + mÐ7 = 180° ___________ ___________ 5. mÐ1 = mÐ7 ___________ ___________ 6. mÐ8 + (mÐ2 + mÐ3) = 180° ___________ ___________ 7. mÐ1 = mÐ4 ___________ ___________ 8. mÐ1 + mÐ2 + mÐ3 = 180° ___________ ___________ 9. mÐ17 = mÐ20 ___________ ___________ 10. mÐ3 = mÐ14 ___________ ___________ 11. mÐ2 = mÐ13 ___________ ___________ 12. mÐ11 = mÐ16 ___________ ___________

Geometry/Trig Name: _________________________ USING Parallel Line Proofs – Page 1 Date: __________________________ 1. Given: g // h and s // t Prove: Ð2 @ Ð15 1 2 9 10 g 3 4 11 12 5 6 13 14 h 7 8 15 16 t s Statements Reasons 2. Given: k // m Prove: Ð1 is supplementary to Ð7 2 6 m 1 5 4 8 k 3 7 Statements Reasons t

C B 3 2 1 A D E USING Parallel Line Proofs – Page 2 3. Given: CD // BE; Ð3 @ Ð1 Prove: BE bisects ÐDBA C B 3 2 1 A D E Statements Reasons 4. Given: AD // BC; Ð1 @ Ð2 Prove: AB bisects ÐCAD C 1 2 A B 3 Statements Reasons D

g h t s PROVING Parallel Line Proofs – Page 3 5. Given: Ð4 @ Ð13; t // s Prove: h // g 1 2 9 10 g 3 4 11 12 5 6 13 14 h 7 8 15 16 t s Statements Reasons 6. Given: AB bisects ÐCAD; Ð1 @ Ð2 Prove: AD // BC C 1 2 A B 3 Statements Reasons D

PROVING Parallel Line Proofs – Page 4 7. Given: Ð1 @ Ð8 Prove: Ð5 @ Ð7 2 6 m 1 5 4 8 3 7 k Statements Reasons t 8. Given: c // d; Ð1 and Ð14 are supplementary Prove: a // b 1 2 9 10 a 3 4 11 12 5 6 13 14 b 7 8 15 16 Statements Reasons c d

Parallel Line Proofs – Page 5 9. Given: AB // CD; Ð2 @ Ð6 Prove: BC // DE A D B 2 1 3 4 5 7 6 C E Statements Reasons 10. Given: BC // DE; Ð2 @ Ð6 Prove: AB // CD A D B 2 1 3 4 5 7 6 C E Statements Reasons

Parallel Line Proofs – Page 6 11. Given: BE bisects ÐDBA; Ð3 @ Ð1 Prove: CD // BE C B 3 2 1 A D E Statements Reasons 12. Given: Ð1 @ Ð2; Ð4 @ Ð5 Prove: Ð3 @ Ð6 HINT: First prove PQ // RS, then you should just need one more step to get to this prove. P R 3 4 T 2 5 6 S 1 Statements Q Reasons