Fourier’s Law and the Heat Equation

Slides:



Advertisements
Similar presentations
FEA Course Lecture V – Outline
Advertisements

Transient Conduction: The Lumped Capacitance Method
Fourier’s Law and the Heat Equation
Transient Conduction: Spatial Effects and the Role of Analytical Solutions Chapter 5 Sections 5.4 to 5.7 Lecture 10.
Chapter 2 Introduction to Heat Transfer
ERT 216 HEAT & MASS TRANSFER Sem 2/
Basic law of heat conduction --Fourier’s Law Degree Celsius.
Chapter 3c : One-dimensional, Steady state conduction (with thermal energy generation) (Section 3.5 – Textbook) 3.1 Implications of energy generation Involve.
Heat Transfer Chapter 2.
Chapter 13 Sections 13.1 through 13.4
CHE/ME 109 Heat Transfer in Electronics LECTURE 6 – ONE DIMENSIONAL CONDUTION SOLUTIONS.
Chapter 2: Overall Heat Transfer Coefficient
Chapter 2: Steady-State One-Dimensional Heat Conduction
One-Dimensional Steady-State Conduction
CHE/ME 109 Heat Transfer in Electronics LECTURE 10 – SPECIFIC TRANSIENT CONDUCTION MODELS.
CHE/ME 109 Heat Transfer in Electronics LECTURE 11 – ONE DIMENSIONAL NUMERICAL MODELS.
The Heat Conduction Equation P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Easy Solution to Industrial Heat Transfer.
Solutions of the Conduction Equation P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Idea Generates More Mathematics….
Conservation of Energy
Transient Conduction: The Lumped Capacitance Method
CHAPTER 8 APPROXIMATE SOLUTIONS THE INTEGRAL METHOD
Diffusion Mass Transfer
CHE/ME 109 Heat Transfer in Electronics LECTURE 5 – GENERAL HEAT CONDUCTION EQUATION.
Heat Transfer Rates Conduction: Fourier’s Law
Heat Transfer Lecture 1.
Heat Transfer: Physical Origins and Rate Equations
Chapter 2 HEAT CONDUCTION EQUATION
CHAPTER 7 NON-LINEAR CONDUCTION PROBLEMS
Laws of Radiation Heat Transfer P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Macro Description of highly complex Wave.
STEADY HEAT TRANSFER AND THERMAL RESISTANCE NETWORKS
1/22/05ME 2591 ME 259 Heat Transfer Lecture Slides II Dr. Gregory A. Kallio Dept. of Mechanical Engineering, Mechatronic Engineering & Manufacturing Technology.
1 CHAPTER 5 POROUS MEDIA Examples of Conduction in Porous Media component electronic micro channels coolant (d) coolant porous material (e) Fig.
Chapter 2 HEAT CONDUCTION EQUATION
INTRODUCTION TO CONDUCTION
Biosystems engineering
Transient Conduction: Spatial Effects and the Role of Analytical Solutions Chapter 5 Sections 5.4 to 5.8.
One Dimensional Non-Homogeneous Conduction Equation P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi A truly non-homogeneous.
One-Dimensional Steady-State Conduction
HEAT CONDUCTION EQUATION
Chapter 2 Introduction to Conduction. Conduction Rate Equation Cartesian Cylindrical Spherical Isotherm: The direction of heat flow will always be normal.
Chapter 1: Fourier Equation and Thermal Conductivity
HW# 2 /Tutorial # 2 WRF Chapter 16; WWWR Chapter 17 ID Chapter 3 Tutorial #2 WRF#16.2;WWWR#17.13, WRF#16.1; WRF#16.12; WRF#17.39; WRF# To be discussed.
STEADY HEAT CONDUCTION
Chapter 2: Heat Conduction Equation
Chapter 2 Conduction Chapter 2.
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2
Heat Transfer: Physical Origins and Rate Equations Chapter One Sections 1.1 and 1.2.
Teaching Innovation - Entrepreneurial - Global
Finite-Difference Solutions Part 2
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2 Tutorial #1 WRF#14.12, WWWR #15.26, WRF#14.1, WWWR#15.2, WWWR#15.3, WRF#15.1, WWWR.
Chapter Three Sections 3.1 through 3.4
Chapter 1. Essential Concepts
One-dimensional steady-state conduction
AFE BABALOLA UNIVERSITY
Heat Transfer: Physical Origins and Rate Equations
Chapter 2: Introduction to Conduction
HW/Tutorial # 1 WRF Chapters 14-15; WWWR Chapters ID Chapters 1-2
Fourier’s Law and the Heat Equation
Chapter 3: One-Dimensional Steady-State Conduction
C.K PITHAWALA COLLEGE OF ENGG. AND TECH.
Fourier’s Law and the Heat Equation
Heat Transfer Transient Conduction.
Heat Diffusion Equation, Boundary Conditions and Initial Conditions
Extended Surface Heat Transfer
Chapter 2. Mathematical Expression of Conduction
Diffusion Mass Transfer
SUBJECT : HEAT & MASS TRANSFER Date : 15/02/2013
Heat Transfer.
Chapter Three Sections 3.1 through 3.4
Chapter Three Section 3.5, Appendix C
Presentation transcript:

Fourier’s Law and the Heat Equation Chapter Two

Fourier’s Law Fourier’s Law A rate equation that allows determination of the conduction heat flux from knowledge of the temperature distribution in a medium Its most general (vector) form for multidimensional conduction is: Implications: Heat transfer is in the direction of decreasing temperature (basis for minus sign). Fourier’s Law serves to define the thermal conductivity of the medium Direction of heat transfer is perpendicular to lines of constant temperature (isotherms). Heat flux vector may be resolved into orthogonal components.

Cartesian Coordinates: Heat Flux Components Cartesian Coordinates: (2.3) Cylindrical Coordinates: (2.18) Spherical Coordinates: (2.21)

Heat Flux Components (cont.) In angular coordinates , the temperature gradient is still based on temperature change over a length scale and hence has units of C/m and not C/deg. Heat rate for one-dimensional, radial conduction in a cylinder or sphere: Cylinder or, Sphere

Heat Equation The Heat Equation A differential equation whose solution provides the temperature distribution in a stationary medium. Based on applying conservation of energy to a differential control volume through which energy transfer is exclusively by conduction. Cartesian Coordinates: (2.13) Thermal energy generation Change in thermal energy storage Net transfer of thermal energy into the control volume (inflow-outflow)

Heat Equation (Radial Systems) Cylindrical Coordinates: (2.20) Spherical Coordinates: (2.33)

Heat Equation (Special Case) One-Dimensional Conduction in a Planar Medium with Constant Properties and No Generation

Boundary and Initial Conditions Boundary Conditions Boundary and Initial Conditions For transient conduction, heat equation is first order in time, requiring specification of an initial temperature distribution: Since heat equation is second order in space, two boundary conditions must be specified. Some common cases: Constant Surface Temperature: Constant Heat Flux: Applied Flux Insulated Surface Convection

Thermophysical Properties Thermal Conductivity: A measure of a material’s ability to transfer thermal energy by conduction. Thermal Diffusivity: A measure of a material’s ability to respond to changes in its thermal environment. Property Tables: Solids: Tables A.1 – A.3 Gases: Table A.4 Liquids: Tables A.5 – A.7

Methodology of a Conduction Analysis Solve appropriate form of heat equation to obtain the temperature distribution. Knowing the temperature distribution, apply Fourier’s Law to obtain the heat flux at any time, location and direction of interest. Applications: Chapter 3: One-Dimensional, Steady-State Conduction Chapter 4: Two-Dimensional, Steady-State Conduction Chapter 5: Transient Conduction

Problem : Thermal Response of Plane Wall Problem 2.46 Thermal response of a plane wall to convection heat transfer.

Problem: Thermal Response (Cont.)

Problem: Thermal Response (Cont.) d) The total energy transferred to the wall may be expressed as Dividing both sides by AsL, the energy transferred per unit volume is

Problem: Non-Uniform Generation due to Radiation Absorption Problem 2.28 Surface heat fluxes, heat generation and total rate of radiation absorption in an irradiated semi-transparent material with a prescribed temperature distribution.

Problem: Non-Uniform Generation (Cont.)

Problem: Non-Uniform Generation (Cont.)