Richard Cleve DC 2117 cleve@cs.uwaterloo.ca Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 18 (2009) Richard.

Slides:



Advertisements
Similar presentations
Quantum Lower Bounds The Polynomial and Adversary Methods Scott Aaronson September 14, 2001 Prelim Exam Talk.
Advertisements

Complexity ©D.Moshkovits 1 Where Can We Draw The Line? On the Hardness of Satisfiability Problems.
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 11 (2005) Richard Cleve DC 3524
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / RAC 2211 Lecture.
Quantum Speedups DoRon Motter August 14, Introduction Two main approaches are known which produce fast Quantum Algorithms The first, and main approach.
1 Boolean Satisfiability in Electronic Design Automation (EDA ) By Kunal P. Ganeshpure.
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
Complexity 19-1 Complexity Andrei Bulatov More Probabilistic Algorithms.
Gradient Methods May Preview Background Steepest Descent Conjugate Gradient.
“Both Toffoli and CNOT need little help to do universal QC” (following a paper by the same title by Yaoyun Shi) paper.
Quantum Search Algorithms for Multiple Solution Problems EECS 598 Class Presentation Manoj Rajagopalan.
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Quantum Algorithms II Andrew C. Yao Tsinghua University & Chinese U. of Hong Kong.
1 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Richard Cleve QNC 3129 Lecture 18 (2014)
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 14 (2009)
1 Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / QNC 3129 Lectures.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 16 (2011)
Peter Høyer Quantum Searching August 1, 2005, Université de Montréal The Fifth Canadian Summer School on Quantum Information.
October 1 & 3, Introduction to Quantum Computing Lecture 2 of 2 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 19 (2009)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Course.
Algorithms Artur Ekert. Our golden sequence H H Circuit complexity n QUBITS B A A B B B B A # of gates (n) = size of the circuit (n) # of parallel units.
October 1 & 3, Introduction to Quantum Computing Lecture 1 of 2 Introduction to Quantum Computing Lecture 1 of 2
NP Complexity By Mussie Araya. What is NP Complexity? Formal Definition: NP is the set of decision problems solvable in polynomial time by a non- deterministic.
Quantum Computing MAS 725 Hartmut Klauck NTU
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 20 (2009)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Lecture 6 NP Class. P = ? NP = ? PSPACE They are central problems in computational complexity.
1 Introduction to Quantum Information Processing CS 667 / Phys 767 / C&O 681 Richard Cleve DC 2117 Lecture 15 (2008)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Quantum Computing MAS 725 Hartmut Klauck NTU
Lecture 25 NP Class. P = ? NP = ? PSPACE They are central problems in computational complexity.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Complexity ©D.Moshkovits 1 2-Satisfiability NOTE: These slides were created by Muli Safra, from OPICS/sat/)
Richard Cleve DC 2117 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Lecture (2011)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lectures
Theory of Computational Complexity Probability and Computing Chapter Hikaru Inada Iwama and Ito lab M1.
Quantum Algorithms Oracles
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
P & NP.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 15 (2009) Richard.
Lecture 2-2 NP Class.
Introduction to Quantum Computing Lecture 1 of 2
(xy)(yz)(xz)(zy)
Lecture 5 NP Class.
Where Can We Draw The Line?
Lecture 24 NP-Complete Problems
Numerical Analysis Lecture 26.
Resolution Proofs for Combinational Equivalence
Quantum Computation and Information Chap 1 Intro and Overview: p 28-58
Richard Cleve DC 2117 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Lecture 15 (2011)
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 24 (2009) Richard.
CSE 6408 Advanced Algorithms.
CSE 589 Applied Algorithms Spring 1999
ICS 353: Design and Analysis of Algorithms
Instructor: Aaron Roth
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 17 (2005) Richard Cleve DC 3524
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 4 (2005) Richard Cleve DC 653
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Presentation transcript:

Richard Cleve DC 2117 cleve@cs.uwaterloo.ca Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 18 (2009) Richard Cleve DC 2117 cleve@cs.uwaterloo.ca

Grover’s quantum search algorithm

Quantum search problem Given: a black box computing f : {0,1}n  {0,1} Goal: determine if f is satisfiable (if x  {0,1}n s.t. f(x) = 1) In positive instances, it makes sense to also find such a satisfying assignment x Classically, using probabilistic procedures, order 2n queries are necessary to succeed—even with probability ¾ (say) Grover’s quantum algorithm that makes only O(2n) queries Query: x1 xn y y  f(x1,...,xn) Uf [Grover ’96]

Applications of quantum search The function f could be realized as a 3-CNF formula: 3-CNF-SAT FACTORING P NP PSPACE co-NP Alternatively, the search could be for a certificate for any problem in NP The resulting quantum algorithms appear to be quadratically more efficient than the best classical algorithms known

Prelude to Grover’s algorithm: two reflections = a rotation Consider two lines with intersection angle : reflection 1 reflection 2  2 2 1 1 Net effect: rotation by angle 2, regardless of starting vector

Grover’s algorithm: description I Basic operations used: x1 xn y y  f(x1,...,xn) Uf Uf x = (1) f(x) x Implementation? X x1 xn y y  [x = 0...0] U0 U0 x = (1) [x = 0...0]x H H Hadamard

Grover’s algorithm: description II 0  Uf H U0 iteration 1 iteration 2 ... construct state H 0...0 repeat k times: apply H U0 H Uf to state 3. measure state, to get x{0,1}n, and check if f (x) =1 (The setting of k will be determined later)

Grover’s algorithm: analysis I Let A = {x {0,1}n : f (x) = 1} and B = {x {0,1}n : f (x) = 0} and N = 2n and a = |A| and b = |B| Let and Consider the space spanned by A and B B A  goal is to get close to this state H0...0 Interesting case: a << N

Grover’s algorithm: analysis II B A Algorithm: (H U0 H Uf )k H 0...0 H0...0 Observation: Uf is a reflection about B: Uf A = A and Uf B = B Question: what is H U0 H ? U0 is a reflection about H0...0 Partial proof: H U0 H H0...0 = H U0 0...0 = H ( 0...0) = H 0...0

Grover’s algorithm: analysis III B A Algorithm: (H U0 H Uf )k H 0...0 2 2 2 H0...0 2  Since H U0 H Uf is a composition of two reflections, it is a rotation by 2, where sin()=a/N  a/N When a = 1, we want (2k+1)(1/N)  /2 , so k  (/4)N More generally, it suffices to set k  (/4)N/a Question: what if a is not known in advance?

Unknown number of solutions 1 success probability number of iterations √N/2 4 solutions 6 solutions 100 solutions success probability very close to zero! Choose a random k in the range to get success probability > 0.43

Optimality of Grover’s algorithm

Optimality of Grover’s algorithm I Theorem: any quantum search algorithm for f : {0,1}n  {0,1} must make (2n) queries to f (if f is used as a black-box) Proof (of a slightly simplified version): f |x (1) f(x)|x Assume queries are of the form and that a k-query algorithm is of the form f U0 U1 U2 U3 Uk |0...0 where U0, U1, U2, ..., Uk, are arbitrary unitary operations

Optimality of Grover’s algorithm II Define fr : {0,1}n  {0,1} as fr (x) = 1 iff x = r Consider fr U0 U1 U2 U3 Uk |0 |ψr,k versus I U0 U1 U2 U3 Uk |0 |ψr,0 We’ll show that, averaging over all r  {0,1}n, || |ψr,k  |ψr,0 ||  2k / 2n

Optimality of Grover’s algorithm III Consider I U0 U1 U2 U3 Uk fr |0 |ψr,i k  i i |ψr,k  |ψr,0 = (|ψr,k  |ψr,k1) + (|ψr,k1  |ψr,k2) + ... + (|ψr,1  |ψr,0) Note that || |ψr,k  |ψr,0 ||  || |ψr,k  |ψr,k1 || + ... + || |ψr,1  |ψr,0 || which implies

Optimality of Grover’s algorithm IV U0 U1 U2 U3 Uk fr |0 |ψr,i query i query i+1 I U0 U1 U2 U3 Uk fr |0 query i query i+1 |ψr,i-1 || |ψr,i  |ψr,i-1 || = |2i,r|, since query only negates |r Therefore, || |ψr,k  |ψr,0 || 

Optimality of Grover’s algorithm V Now, averaging over all r  {0,1}n, (By Cauchy-Schwarz) Therefore, for some r  {0,1}n, the number of queries k must be (2n), in order to distinguish fr from the all-zero function This completes the proof