Ashraf Hamdan et al. JCIN 2015;8:

Slides:



Advertisements
Similar presentations
Date of download: 5/31/2016 Copyright © The American College of Cardiology. All rights reserved. From: Mechanical Dispersion Assessed by Myocardial Strain.
Advertisements

Date of download: 6/20/2016 Copyright © The American College of Cardiology. All rights reserved. From: Mitral and Tricuspid Annular Velocities in Constrictive.
Zhi-hui Hou et al. JIMG 2012;5:
Prakash Harikrishnan et al. JACEP 2015;1:
Prakash Harikrishnan et al. JACEP 2015;1:
Comparison of the model incorporating daily dose to that incorporating Cmax. Comparison of the model incorporating daily dose to that incorporating Cmax.
José L. Morales et al. JACEP 2017;j.jacep
Tom F. Brouwer et al. JACEP 2016;2:
Takekuni Hayashi et al. JACEP 2016;2:27-35
Evaluation of models incorporating the base covariates.
Takekuni Hayashi et al. JACEP 2016;2:27-35
Konstantinos C. Siontis et al. JACEP 2016;2:
Chin-Yu Lin et al. JACEP 2016;2:
Shadi Al Halabi et al. JACEP 2015;1:
Pugazhendhi Vijayaraman et al. JACEP 2015;1:
Ludhmila A. Hajjar, MD, PhD, Juliano P. Almeida, MD, Julia T
David D. Berg et al. JACC 2018;71:
Ryoji Nagoshi et al. JCIN 2016;9:e107-e109
Samuel H. Baldinger et al. JACEP 2016;2:14-23
Jong Sung Park et al. JACEP 2016;2:
Heiko Lehrmann et al. JACEP 2018;j.jacep
Mitsunori Maruyama et al. JACEP 2017;3:
Mohit K. Turagam et al. JACEP 2017;3:
John A. Bittl et al. JACC 2016;68:
Figure 1 ROC curve of ASFMR1-TV2
Mintu P. Turakhia et al. JACEP 2016;2:
Konstantinos C. Siontis et al. JACEP 2016;2:
Mitsunori Maruyama et al. JACEP 2017;3:
Matthew Oster et al. JACC 2019;73:
S.M. Afzal Sohaib et al. JACEP 2015;1:
Prabhat Kumar et al. JACEP 2016;j.jacep
Ryoji Nagoshi et al. JCIN 2016;9:e107-e109
Vittorio Calzolari et al. JACEP 2017;3:
Toshiaki Toyota et al. JCIN 2017;10:27-37
P. Michael Grossman et al. JCIN 2009;2:
Vittorio Calzolari et al. JACEP 2017;3:
Kensuke Nishimiya et al. JCIN 2016;9:
Mintu P. Turakhia et al. JACEP 2016;2:
Emilce Trucco et al. JACEP 2018;j.jacep
Seung-Yul Lee et al. JCIN 2018;j.jcin
Pugazhendhi Vijayaraman et al. JACEP 2015;1:
Noboru Ichihara et al. JACEP 2016;2:
Christopher T. Nguyen et al. BTS 2018;3:97-109
Michael S. Kim et al. JCIN 2009;2:81-90
Emilce Trucco et al. JACEP 2018;j.jacep
(A) ROC for the prediction of 5-year mortality in unoperated significant MR. AUCs and corresponding p values are shown for lateral annulus E/E′ (AUC=0.69,
Alfredo R. Galassi et al. JCIN 2016;9:
Receiver operating characteristic curves of prediction models.
Natasha A. Loghmanpour et al. JCHF 2016;4:
Davide Capodanno et al. JCIN 2009;2:
—ROC curves for each simple test compared with NCS (gold standard) plotting the sensitivity versus 1-specificity (the false-positive rate) for different.
Nils P. Johnson et al. JCIN 2015;8:
Alfredo R. Galassi et al. JCIN 2016;9:
Maria Alejandra Restrepo-Cordoba et al. JCIN 2016;9:e137-e139
Ryan R. Reeves et al. JCIN 2015;8:
Receiver-operating characteristic curves showing the performance of the diabetes risk score in predicting diabetes in the United Arab Emirates (UAE) citizens.
Christian Madelaire et al. JCHF 2018;6:
Davide Capodanno et al. JCIN 2009;2:
Maxime Berthelot-Richer et al. JIMG 2016;9:
Leonard M. Rademakers et al. JACEP 2016;2:
Mitsunori Maruyama et al. JACEP 2017;3:
Mackram F. Eleid et al. JIMG 2016;9:
Omar Abdul-Jawad Altisent et al. JCIN 2016;9:
Mackram F. Eleid et al. JIMG 2016;9:
A and B, The ROC curves analyzing the sensitivity and specificity of the WHO grading system (I-IV) for the 1-year survival (A) and recurrence (B) show.
Receiver operating characteristic (ROC) curves assessing pre-trilostane, three-hour post-trilostane and post-adrenocorticotrophic hormone (ACTH) cortisol.
Miralem Pasic et al. JCIN 2015;8:1-9
Stefan Toggweiler et al. JCIN 2016;9:
ROC analysis of MIC-1 and CA19-9.
Receiver operator characteristic (ROC) curve for fasting blood glucose (FBG) predicting posttransplantation diabetes (PTD) using time 0 FBG (a) and screening.
Presentation transcript:

Ashraf Hamdan et al. JCIN 2015;8:1218-1228 ROC Curves and Decision Plots of MS Length and ΔMSID for Prediction of Higher Degree AV Block and Permanent Pacemaker Implantation (Left) ROC curves. (Middle) Smoothed ROC curves. (Right) Decision plots. (A) MS length as a predictor of AV block. The area under the curve (AUC) was 0.78 (95% CI: 0.66 to 0.90) and 0.78 (95% CI: 0.67 to 0.89) under the smoothed curve. Sensitivity/specificity crossover occurred at 7.8 mm. (B) MS length as a predictor of PPM implantation. The AUC was 0.76 (95% CI: 0.65 to 0.88) and 0.77 (95% CI: 0.66 to 0.88) under the smoothed curve. Sensitivity/specificity crossover occurred at 7.4 mm. (C) ΔMSID as a predictor of AV block. The AUC was 0.88 (95% CI: 0.80 to 0.96) and 0.88 (95% CI: 0.80 to 0.96) under the smoothed ROC curve. Sensitivity/specificity crossover occurred at 0.4 mm. (D) ΔMSID as a predictor of PPM implantation. The AUC was 0.83 (95% CI: 0.73 to 0.93) and 0.83 (95% CI: 0.74 to 0.93) under smoothed OC curve. Sensitivity/specificity crossover occurred at 0.4 mm. CI = confidence interval; ROC = receiver-operating characteristic; other abbreviations as in Figures 1, 2, and 3. Ashraf Hamdan et al. JCIN 2015;8:1218-1228 2015 American College of Cardiology Foundation