Probability: Mutually Exclusive Events 1. There are 3 red, 4 black and 5 blue cubes in a bag. A cube is selected at random. What is the probability of.

Slides:



Advertisements
Similar presentations
Natalia Sivackova. Events that cannot happen together (e.g. cant a card that is both red and black in a card deck) P(A B) = P(A) + P(B)
Advertisements

Aim: What are ‘Or’ Probabilities?
Bellwork If you roll a die, what is the probability that you roll a 2 or an odd number? P(2 or odd) 2. Is this an example of mutually exclusive, overlapping,
Homework Answers 9) 6/24 + 6/24 = 12/24 or ½ 11) 12/ /24 = 24/24 or 1 23) P(2 and A) = (1/6 * 1/5) = 1/30 P(2 and B) = (1/6 * 1/5) = 1/30 P(2 and.
Bellwork You roll a fair die one time, find each probability below.
Understand and use the probability scale Find and justify theoretical probabilities.
Probability of Independent Events
Probability Chances or odds of an event occurring.
Addition Facts
1 Combination Symbols A supplement to Greenleafs QR Text Compiled by Samuel Marateck ©2009.
Chapter 4 Basic Probability
Lecture 18 Dr. MUMTAZ AHMED MTH 161: Introduction To Statistics.
WARM UP Students that were here last class, get with your groups and finish your Mutually Exclusive problems New students wait until attendance is called.
Probability Key. You are given a standard deck of 52 playing cards, which consists of 4 suits: diamonds, hearts, clubs, and spades. Each suit has 13 cards.
Simple Probability and Odds
15.7 Probability Day 3. There are 2 nickels, 3 dimes, and 5 quarters 1.) Find the probability of selecting 1 nickel, 1 dime, and 1 quarter in that order.
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
1 Combinations & Counting II Samuel Marateck © 2009.
Probability of Compound Events
Probability Ch 14 IB standard Level.
Whiteboardmaths.com © 2004 All rights reserved
Week 1.
Counting Techniques 1. Sequential Counting Principle Section
Index Student Activity 1: Questions to familiarise students with the
What is Probability Learning Intention Success Criteria
Probability Sample Space Diagrams.
GOAL: FIND PROBABILITY OF A COMPOUND EVENT. ELIGIBLE CONTENT: A PROBABILITY OF COMPOUND EVENTS.
Laws of Probability What is the probability of throwing a pair of dice and obtaining a 5 or a 7? These are mutually exclusive events. You can’t throw.
Academy Algebra II/Trig 14.3: Probability HW: worksheet Test: Thursday, 11/14.
Bellwork What fraction of the spinner is blue? Write in simplest form.
Whiteboardmaths.com © 2011 All rights reserved
Experimental Probability of Simple Events
Compound Probability Pre-AP Geometry. Compound Events are made up of two or more simple events. I. Compound Events may be: A) Independent events - when.
CONFIDENTIAL 1 Algebra1 Theoretical Probability. CONFIDENTIAL 2 Warm Up 1) choosing a heart. 2) choosing a heart or a diamond. An experiment consists.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 12.2 Theoretical Probability
Notes on PROBABILITY What is Probability? Probability is a number from 0 to 1 that tells you how likely something is to happen. Probability can be either.
Page 973, 10.3, % 9.43% % 11. Permutation 12. Permutation 13. Combination 14. Combination, 18%
Seminar 7 MM150 Bashkim Zendeli. Chapter 7 PROBABILITY.
Quality resources for the mathematics classroom Reduce your workload and cut down planning Enjoy a new teaching experience Watch your students interest.
Chapter 7 Probability. 7.1 The Nature of Probability.
Mutually Exclusive Events OBJ: Find the probability that mutually exclusive and inclusive events occur.
April 26, 2010Math 132: Foundations of Mathematics 11.4 Homework Solutions 55. P(male) = P(female) = P(25-34) = P(35-44) =.143.
Today’s Objectives:. Warm Up TOC WWK Mutually Exclusive & Mutually Exclusive—two events are mutually exclusive if they CANNOT occur at the same.
Algebra II 10.3: Define and Use Probability Quiz : tomorrow.
Do Now 5/21/13 Take out HW from last night. Text p. 408, #1-16
Probability Mutually Exclusive – Events which can not occur at the same time Non Mutually Exclusive – Events which can occur at the same time Independent.
Algebra II 10.4: Find Probabilities of Disjoint and Overlapping Events HW: HW: p.710 (8 – 38 even) Chapter 10 Test: Thursday.
Review Homework pages Example: Counting the number of heads in 10 coin tosses. 2.2/
Math I.  Probability is the chance that something will happen.  Probability is most often expressed as a fraction, a decimal, a percent, or can also.
Math I.  Probability is the chance that something will happen.  Probability is most often expressed as a fraction, a decimal, a percent, or can also.
Draw 3 cards without replacement from a standard 52 card deck. What is the probability that: 1.They are all red ? 2.At least one is black ? 3.They are.
Do Now. Introduction to Probability Objective: find the probability of an event Homework: Probability Worksheet.
Chapter 12 Section 1 - Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Introduction Remember that probability is a number from 0 to 1 inclusive or a percent from 0% to 100% inclusive that indicates how likely an event is to.
0-11 Probability Goal: Find the probability of an event occurring. Eligible Content: A
Probability Lesson 1 Aims:
Whiteboardmaths.com © 2004 All rights reserved
Samples spaces are _______________
What is Probability Learning Intention Success Criteria
0-11 Probability Goal: Find the probability of an event occurring.
What is Probability Learning Intention Success Criteria
Do Now You roll a die and spinning a spinner numbered What is the probability of rolling an even number and landing on a power of 3 on the spinner?
The Addition Rule.
Introduction Remember that probability is a number from 0 to 1 inclusive or a percent from 0% to 100% inclusive that indicates how likely an event is to.
Experiments, Sample Spaces, and Events
The meaning of probability
Section 12.2 Theoretical Probability
Section 12.2 Theoretical Probability
Section 12.2 Theoretical Probability
Presentation transcript:

Probability: Mutually Exclusive Events 1. There are 3 red, 4 black and 5 blue cubes in a bag. A cube is selected at random. What is the probability of selecting a red or a blue cube? Since there are 8 cubes that are red or blue out of a total of 12, the answer must be 8/12. P(red or blue) = 8/12 Note that we could have written down the individual probabilities and added them to get the same answer like so: P(red or blue) = P(red) + P(blue) = 3/12 + 5/12 = 8/12 2. Find the probability of selecting an ace or a king from a pack of 52 cards. Simply by counting the outcomes needed (4 aces and 4 kings), the answer is 8/52. P(ace or king) = 8/52. Or, as before, we get the same answer by adding the individual probabilities. P(ace or king) = P(ace) + P(king) = 4 /52 + 4/52 = 8/52

In these two examples, the events that occurred could not have happened at the same time. In 1. A red and a blue die could not have been chosen at the same time. In 2. An ace and a king could not have been chosen at the same time. Mutually Exclusive Events Events that cannot happen at the same time are called MUTUALLY EXCLUSIVE. The OR LAW When events are mutually exclusive we can always add the probabilities. For mutually exclusive events: P(A or B) = P(A) + P(B)

The OR LAW For mutually exclusive events: P(A or B) = P(A) + P(B) 0 Impossible 1 Certain ½ When using the Or Law and adding the individual probabilities, the cumulative effect increases the likelihood of the combined events happening. P(red) = 3/12 P(red or blue ) = 3/12 + 5/12 = 8/12 P(red or blue or black ) = 3/12 + 5/12 + 4/12 = 1 This may seem obvious but it is worth stating explicitly since there is another law to come later, (the AND LAW) where the probabilities are reduced and sometimes confusion occurs between the two. 123

If the events in question are not mutually exclusive then the OR LAW cannot be used and the probabilities cannot be added. Events that are NOT Mutually Exclusive Consider the problem of taking a card at random from a pack. What is the probability of selecting a diamond or a queen? These events are not mutually exclusive because the queen of diamonds is both a queen and a diamond.

Events that are NOT Mutually Exclusive If we tried to use the OR LAW then: P(diamond or queen) = P(diamond) + P(queen) = 13/52 + 4/52 = 17/52 Whereas there are in fact only 16 cards that are diamonds or queens. Therefore P(diamond or queen) = 16/52

Consider the problem of spinning the pointer on the spinner. What is the probability of the pointer indicating a green colour or a number 5. These events are not mutually exclusive since the pointer can indicate green and 5 at the same time. If we tried to use the OR LAW then: P(Green or 5) = P(Green) + P(5) = 1/6 + 2/6 = 3/6 Whereas there are only 2 areas of the spinner that show green or a 5 Therefore P(Green or 5) = 2/6

A single card is chosen at random from the full deck of cards. Work out the probabilities of the following events and simplify your answer where necessary. (a) P(club) (b) P(picture card) (c) P(queen) (d) P(heart or spade) (e) P(9 or 2) (a) P(club) = 13/52 = 1/4 (b) P(picture card) = 12/52 = 3/13 (c) P(queen) = 4/52 = 1/13 (d) P(heart or spade) = 13/ /52 = 26/52 = 1/2 (e) P(9 or 2) = 4/52 + 4/52 = 8/52 = 2/13

(a) P(3 or 7 or king) (b) P(heart or diamond or spade) (c) P(diamond or ace) (a) P(3 or 7 or king) = 4/52 + 4/52 + 4/52 = 12/52 = 3/13 (b) P(heart or diamond or spade) = 13/ / /52 = 39/52 = 3/4 (c) P(diamond or ace) = 16/52 = 4/13 (events are not mutually exclusive)

A single card is chosen at random from the depleted deck of cards. Work out the probabilities of the following events and simplify your answer where necessary. (a) P(spade) (b) P(picture card) (c) P(king) (d) P(heart or spade) (e) P(4 or 7) (a) P(spade) = 10/40 = 1/4 (b) P(picture card) = 11/40 (c) P(king) = 4/40 =1/10 (d) P(heart or spade) = 11/ /40 = 21/40 (e) P(4 or 7) = 1/40 + 4/40 = 5/40 = 1/8

(a) P(2 or 7 or king) (b) P(heart or diamond or spade) (c) P(diamond or jack) (a) P(2 or 7 or king) = 3/48 + 4/48 + 2/48 = 9/48 = 3/16 (b) P(heart or diamond or spade) = 12/ / /48 = 37/48 (c) P(diamond or jack) = 15/48 = 5/16 (events are not mutually exclusive)

Player 1 lays a card at random from his hand. What are the probabilities of the card being: (a) A king or a 7. (b) A heart or a club. (c) A heart or king. Player 1 (a) P(king or 7) = 2/7 + 1/7 = 3/7(b) P(heart or club) = 3/7 + 2/7 = 5/7 (c) P(heart or king) = 4/7 (events not mutually exclusive) Player 2

Player 2 lays a card at random from his hand. What are the probabilities of the card being: (a) A queen or a 7. (b) A diamond or a club (c) A club or a 7 (a) P(queen or 7) = 2/8 + 2/8 = 4/8 (1/2)(b) P(diamond or club) = 2/8 + 3/8 = 5/8 (c) P(club or 7) = 4/8 (1/2) (events not mutually exclusive) Player 1 Player 2

Probability: Mutually Exclusive Events 1. There are 3 red, 4 black and 5 blue cubes in a bag. A cube is selected at random. What is the probability of selecting a red or a blue cube? Since there are 8 cubes that are red or blue out of a total of 12, the answer must be 8/12. Note that we could have written down the individual probabilities and added them to get the same answer like so: 2. Find the probability of selecting an ace or a king from a pack of 52 cards. Simply by counting the outcomes needed (4 aces and 4 kings), the answer is 8/52. Or, as before, we get the same answer by adding the individual probabilities.

In these two examples, the events that occurred could In 1. A red and a blue die could not have been chosen at the same time. In 2. An ace and a king could not have been chosen at the same time. Mutually Exclusive Events Events that cannot happen at the same time are called. The OR LAW When events are mutually exclusive we can always add the probabilities. For mutually exclusive events:

If the events in question are not mutually exclusive then the OR LAW cannot be used and the probabilities cannot be added. Events that are NOT Mutually Exclusive Consider the problem of taking a card at random from a pack. What is the probability of selecting a diamond or a queen?

Events that are NOT Mutually Exclusive If we tried to use the OR LAW then: P(diamond or queen) = P(diamond) + P(queen) = Whereas there are in fact only cards that are diamonds or queens. Therefore P(diamond or queen) =

Consider the problem of spinning the pointer on the spinner. What is the probability of the pointer indicating a green colour or a number 5. These events are not mutually exclusive since the pointer can indicate green and 5 at the same time. If we tried to use the OR LAW then: Whereas there are only 2 areas of the spinner that show green or a 5 Therefore P(Green or 5) =

Player 2 lays a card at random from his hand. What are the probabilities of the card being: (a) A queen or a 7. (b) A diamond or a club (c) A club or a 7 (a) P(queen or 7) =(b) P(diamond or club) = (c) P(club or 7) = Player 1 Player 2 Homework: page 312 – 313 # 1, 4, 6, 7, 9, 11, 12, Page 340 – 343 # 1, 3, 4, 5, 7, 8, 13

Using the roulette wheel, find the probabilities of the ball landing on: (a) Number 7 (b) An odd number (c) A prime Number (d) The colour red (e) A number ending in 4 or 9 (f) A red or 15 (g) A black or 10 (a) P(7) = 1/37(b) P(odd) = 18/37 (c) P(prime) = 11/37 (d) P(red) = 18/37 (e) P(number ending in 4 or 9) = 4/37 + 3/37 = 7/37 (f) P(red or 15) = 18/37 + 1/37 = 19/37 (g) P(black or 10) = 18/37 events are not mutually exclusive