The Fourier Transform Jean Baptiste Joseph Fourier.

Slides:



Advertisements
Similar presentations
Computer Vision Lecture 7: The Fourier Transform
Advertisements

Digital Image Processing
Fourier Transform (Chapter 4)
Chapter Four Image Enhancement in the Frequency Domain.
Chap 4 Image Enhancement in the Frequency Domain.
Spatial Filtering Dan Witzner Hansen. Recap Exercises??? Feedback Last lectures?
The Fourier Transform Jean Baptiste Joseph Fourier.
Reminder Fourier Basis: t  [0,1] nZnZ Fourier Series: Fourier Coefficient:
Chap 4-2. Frequency domain processing Jen-Chang Liu, 2006.
The Fourier Transform Jean Baptiste Joseph Fourier.
The Fourier Transform Jean Baptiste Joseph Fourier.
General Functions A non-periodic function can be represented as a sum of sin’s and cos’s of (possibly) all frequencies: F(  ) is the spectrum of the function.
Digital Image Processing Chapter 4: Image Enhancement in the Frequency Domain.
Image Enhancement in the Frequency Domain Part I Image Enhancement in the Frequency Domain Part I Dr. Samir H. Abdul-Jauwad Electrical Engineering Department.
CSCE 641 Computer Graphics: Fourier Transform Jinxiang Chai.
Image Fourier Transform Faisal Farooq Q: How many signal processing engineers does it take to change a light bulb? A: Three. One to Fourier transform the.
Digital Image Processing Chapter 4: Image Enhancement in the Frequency Domain.
CPSC 641 Computer Graphics: Fourier Transform Jinxiang Chai.
Computational Photography: Fourier Transform Jinxiang Chai.
Transforms: Basis to Basis Normal Basis Hadamard Basis Basis functions Method to find coefficients (“Transform”) Inverse Transform.
The Fourier Transform Jean Baptiste Joseph Fourier.
Image Processing Fourier Transform 1D Efficient Data Representation Discrete Fourier Transform - 1D Continuous Fourier Transform - 1D Examples.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Linearity Time Shift and Time Reversal Multiplication Integration.
CSC589 Introduction to Computer Vision Lecture 7 Thinking in Frequency Bei Xiao.
Digital Image Processing Chapter # 4 Image Enhancement in Frequency Domain Digital Image Processing Chapter # 4 Image Enhancement in Frequency Domain.
1 Spatial Frequency or How I learned to love the Fourier Transform Jean Baptiste Joseph Fourier.
Chapter 4: Image Enhancement in the Frequency Domain Chapter 4: Image Enhancement in the Frequency Domain.
: Chapter 14: The Frequency Domain 1 Montri Karnjanadecha ac.th/~montri Image Processing.
(Lecture #08)1 Digital Signal Processing Lecture# 8 Chapter 5.
1 Chapter 5 Image Transforms. 2 Image Processing for Pattern Recognition Feature Extraction Acquisition Preprocessing Classification Post Processing Scaling.
Digital Image Processing Chapter 4 Image Enhancement in the Frequency Domain Part I.
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Background Any function that periodically repeats itself.
ENG4BF3 Medical Image Processing Image Enhancement in Frequency Domain.
October 29, 2013Computer Vision Lecture 13: Fourier Transform II 1 The Fourier Transform In the previous lecture, we discussed the Hough transform. There.
7- 1 Chapter 7: Fourier Analysis Fourier analysis = Series + Transform ◎ Fourier Series -- A periodic (T) function f(x) can be written as the sum of sines.
Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D.
Fourier Transform.
CS 376b Introduction to Computer Vision 03 / 17 / 2008 Instructor: Michael Eckmann.
2D Fourier Transform.
Fourier Transform J.B. Fourier Image Enhancement in the Frequency Domain 1-D Image Enhancement in the Frequency Domain 1-D.
Ch # 11 Fourier Series, Integrals, and Transform 1.
The Frequency Domain Digital Image Processing – Chapter 8.
Fourier Transform (Chapter 4) CS474/674 – Prof. Bebis.
Jean Baptiste Joseph Fourier
The Fourier Transform Jean Baptiste Joseph Fourier.
Image Enhancement and Restoration
Lecture 1.26 Spectral analysis of periodic and non-periodic signals.
LECTURE 11: FOURIER TRANSFORM PROPERTIES
The Fourier Transform Jean Baptiste Joseph Fourier.
The Fourier Transform Jean Baptiste Joseph Fourier.
Frequency domain analysis and Fourier Transform
General Functions A non-periodic function can be represented as a sum of sin’s and cos’s of (possibly) all frequencies: F() is the spectrum of the function.
Fourier Transform.
ENG4BF3 Medical Image Processing
Frequency Domain Analysis
2D Fourier transform is separable
CSCE 643 Computer Vision: Thinking in Frequency
Image Processing, Leture #14
4. Image Enhancement in Frequency Domain
4. DIGITAL IMAGE TRANSFORMS 4.1. Introduction
I. Previously on IET.
Instructor: S. Narasimhan
The Fourier Transform Jean Baptiste Joseph Fourier.
Digital Image Procesing Unitary Transforms Discrete Fourier Trasform (DFT) in Image Processing DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL.
Intensity Transformation
Chapter 15: Wavelets (i) Fourier spectrum provides all the frequencies
Digital Image Procesing Unitary Transforms Discrete Fourier Trasform (DFT) in Image Processing DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL.
Discrete Fourier Transform
LECTURE 11: FOURIER TRANSFORM PROPERTIES
The Frequency Domain Any wave shape can be approximated by a sum of periodic (such as sine and cosine) functions. a--amplitude of waveform f-- frequency.
Presentation transcript:

The Fourier Transform Jean Baptiste Joseph Fourier

A sum of sines and cosines = 3 sin(x) A sin(x) A + 1 sin(3x) B A+B + 0.8 sin(5x) C A+B+C Accept without proof that every function is a sum of sines/cosines As frequency increases – more details are added Low frequency – main details Hight frequency – fine details Coef decreases with the frequency + 0.4 sin(7x) D A+B+C+D

Higher frequencies due to sharp image variations (e.g., edges, noise, etc.)

The Continuous Fourier Transform

Complex Numbers Imaginary Z=(a,b) b |Z|  Real a

The 1D Basis Functions x The wavelength is 1/u . The frequency is u .

The Continuous Fourier Transform 1D Continuous Fourier Transform: The Inverse Fourier Transform The Fourier Transform 2D Continuous Fourier Transform: The Inverse Transform The Transform

The 2D Basis Functions V U The wavelength is . The direction is u/v .

Discrete Functions f(x) f(n) = f(x0 + nDx) The discrete function f: f(x0+2Dx) f(x0+3Dx) f(x0+Dx) f(x0) x0 x0+Dx x0+2Dx x0+3Dx 0 1 2 3 ... N-1 The discrete function f: { f(0), f(1), f(2), … , f(N-1) }

The Discrete Fourier Transform 1D Discrete Fourier Transform: (u = 0,..., N-1) (x = 0,..., N-1) 2D Discrete Fourier Transform: (x = 0,..., N-1; y = 0,…,M-1) (u = 0,..., N-1; v = 0,…,M-1)

The Fourier Image Image f Fourier spectrum |F(u,v)| Fourier spectrum log(1 + |F(u,v)|)

Frequency Bands Image Fourier Spectrum Percentage of image power enclosed in circles (small to large) : 90%, 95%, 98%, 99%, 99.5%, 99.9%

Low pass Filtering 90% 95% 98% 99% 99.5% 99.9%

Noise Removal Noisy image Noise-cleaned image Fourier Spectrum

High Pass Filtering Original High Pass Filtered

High Frequency Emphasis + Original High Pass Filtered

High Frequency Emphasis Original High Frequency Emphasis High Frequency Emphasis Original

High Frequency Emphasis Original High pass Filter High Frequency Emphasis High Frequency Emphasis + Histogram Equalization

Properties of the Fourier Transform – Developed on the board… (e.g., separability of the 2D transform, linearity, scaling/shrinking, derivative, rotation, shift  phase-change, periodicity of the discrete transform, etc.) We also developed the Fourier Transform of various commonly used functions, and discussed applications which are not contained in the slides (motion, etc.)

2D Image 2D Image - Rotated Fourier Spectrum Fourier Spectrum

Fourier Transform -- Examples Image Domain Frequency Domain

Fourier Transform -- Examples Image Domain Frequency Domain

Fourier Transform -- Examples Image Domain Frequency Domain

Fourier Transform -- Examples Image Domain Frequency Domain

Fourier Transform -- Examples Image Fourier spectrum

Fourier Transform -- Examples Image Fourier spectrum

Fourier Transform -- Examples Image Fourier spectrum

Fourier Transform -- Examples Image Fourier spectrum