物質科学のための計算数理 II Numerical Analysis for Material Science II

Slides:



Advertisements
Similar presentations
Modelling of Defects DFT and complementary methods
Advertisements

Peter De á k Challenges for ab initio defect modeling. EMRS Symposium I, Challenges for ab initio defect modeling Peter.
Quantum Theory of Solids
Introduction to PAW method
20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.
CHE Inorganic, Physical & Solid State Chemistry Advanced Quantum Chemistry: lecture 4 Rob Jackson LJ1.16,
DFT Calculations Shaun Swanson.
Electronic structure of La2-xSrxCuO4 calculated by the
20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.
PA4311 Quantum Theory of Solids Quantum Theory of Solids Mervyn Roy (S6) www2.le.ac.uk/departments/physics/people/mervynroy.
FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory Emilio Artacho Department of Earth Sciences University of Cambridge.
Philippe Ghosez Lattice dynamics Andrei Postnikov Javier Junquera.
Computational Solid State Physics 計算物性学特論 第7回
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP DFT Calculations.
Lectures Introduction to computational modelling and statistics1 Potential models2 Density Functional.
Practical quantum Monte Carlo calculations: QWalk
Computational Solid State Physics 計算物性学特論 第4回 4. Electronic structure of crystals.
Lecture 17: Excitations: TDDFT Successes and Failures of approximate functionals Build up to many-body methods Electronic Structure of Condensed Matter,
Norm-conserving pseudopotentials and basis sets in electronic structure calculations Javier Junquera Universidad de Cantabria.
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
R. Martin - Pseudopotentials1 African School on Electronic Structure Methods and Applications Lecture by Richard M. Martin Department of Physics and Materials.
Density Functional Theory (DFT) DFT is an alternative approach to the theory of electronic structure; electron density plays a central role in DFT. Why.
Electronic Band Structures electrons in solids: in a periodic potential due to the periodic arrays of atoms electronic band structure: electron states.
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
Fundamentals of DFT R. Wentzcovitch U of Minnesota VLab Tutorial Hohemberg-Kohn and Kohn-Sham theorems Self-consistency cycle Extensions of DFT.
Density Functional Theory A long way in 80 years L. de Broglie – Nature 112, 540 (1923). E. Schrodinger – 1925, …. Pauli exclusion Principle.
Physics “Advanced Electronic Structure” Lecture 1. Theoretical Background Contents: 1. Historical Overview. 2. Basic Equations for Interacting Electrons.
Last hour: Electron Spin Triplet electrons “avoid each other”, the WF of the system goes to zero if the two electrons approach each other. Consequence:
Physics “Advanced Electronic Structure” Lecture 2. Density Functional Theory Contents: 1. Thomas-Fermi Theory. 2. Density Functional Theory. 3.
Solid State Computing Peter Ballo. Models Classical: Quantum mechanical: H  = E  Semi-empirical methods Ab-initio methods.
Numerical Aspects of Many-Body Theory Choice of basis for crystalline solids Local orbital versus Plane wave Plane waves e i(q+G).r Complete (in practice.
Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT.
2/09/2015PHY 752 Spring Lecture 111 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 11: Reading: Chapter 9 in MPM Approximations.
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
© copyright 2011 William A. Goddard III, all rights reservedCh121a-Goddard-L14 Periodic Boundary Methods and Applications: Ab-initio Quantum Mechanics.
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
Ch.1. Elementary Quantum Chemistry
Density Functional Theory and the LAPW method with Applications Andrew Nicholson Solid State Physics II Spring 2009 (Elbio Dagotto) Brought to you by:
Isolated Si atoms.
Structure of Presentation
Christopher Crawford PHY
Solid State Computing Peter Ballo.
Integrated Computational Materials Engineering Education Calculation of Equation of State Using Density Functional Theory Mark Asta1, Katsuyo Thornton2,
PHY 752 Solid State Physics Review: Chapters 1-6 in GGGPP
3: Density Functional Theory
Observation functional An exact generalization of DFT
Introduction to Tight-Binding
PHY 752 Solid State Physics
PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103
Automated construction of Potential Energy
PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107
Numerical Modeling for Semiconductor Quantum Dot Molecule Based on the Current Spin Density Functional Theory Jinn-Liang Liu Department of Applied.
Statistical Mechanics and Multi-Scale Simulation Methods ChBE
Integrated Computational Materials Engineering Education Calculation of Equation of State Using Density Functional Theory Mark Asta1, Katsuyo Thornton2,
Solid state physics Lecture 3: chemical bonding Prof. Dr. U. Pietsch.
Yosuke Harashima, Keith Slevin
Schrödinger Theory of the Electronic Structure of Matter from a ‘Newtonian’ Perspective Viraht Sahni.
Density Functional Theory (introduced for many-electron systems)
Band-structure calculation
Prof. Sanjay. V. Khare Department of Physics and Astronomy,
The Nuts and Bolts of First-Principles Simulation
A One-Dimensional Bandstructure Model
Bandstructure Problem: A One Dimensional Model
Integrated Computational Materials Engineering Education Calculation of Equation of State Using Density Functional Theory Mark Asta1, Katsuyo Thornton2,
物質科学のための計算数理 II Numerical Analysis for Material Science II
Hartree Self Consistent Field Method
PHY 752 Solid State Physics
PHY 752 Solid State Physics Reading: Chapter 4 in GGGPP
Integrated Computational Materials Engineering Education Calculation of Equation of State Using Density Functional Theory Mark Asta1, Katsuyo Thornton2,
Quantum One.
Presentation transcript:

物質科学のための計算数理 II Numerical Analysis for Material Science II 11th: Density Functional Theory (4) Dec. 21 (Fri) Lecturer: Mitsuaki Kawamura (河村光晶)

Schedule (This semester W1, W2) Sep. 28 (Fri) Guidance Y Oct. 5 (Fri) Monte Carlo method O Oct. 12 (Fri) Monte Carlo method O Oct. 19 (Fri) Monte Carlo method O Oct. 26 (Fri) Exact diagonalization Y Nov. 2 (Fri) Exact diagonalization Y Nov. 9 (Fri) Molecular dynamics O (1st report problem will be announced.) Nov. 30 (Fri) Density functional theory K Dec. 7 (Fri) Density functional theory K Dec. 14 (Fri) Density functional theory K Dec. 21 (Fri) Density functional theory K Dec. 25 (Tue) Density functional theory K (遠隔講義室) Jan. 11 (Fri) (2nd)Report problem K ※ Lecturers: Y … Yamaji, K … Kawamura, O… Ohgoe

Schedule in this section (DFT) Nov. 30 (Fri) Standard DFT code First-principles calculation and Density functional theory (Lecture) One-body Schrödinger eq. for periodic system and Bloch theorem (L) Numerical solution of Kohn-Sham (one-body Schrödinger) eq. (L) Hands-on DFT code (Tutorial) Version control system : Git (T) Dec. 7 (Fri) Kohn-Sham eq. Plane-wave basis and Pseudopotentials (L) Iterative eigenvalue solution method (L & T) Dec. 14 (Fri) Self-Consistent loop Hartree potential (Poisson eq.), Atomic potential, XC potential Update (Broyden's method) Visualization of grid data (T) Dec. 21 (Fri) Total Energy Total energy Brillouin-zone integral (Tetrahedron method) Coulomb potential for periodic point charge (Ewald sum) Dec. 25 (Tue) Advanced subjects for productive calculation (遠隔講義室) Generalized gradient correction Non-local pseudopotentials (Norm-conserving, ultrasoft, PAW) Procedure Jan. 11 (Fri) (2nd) Report problem, Question time

Today’s Schedule Total energy Hartree term Exchange correlation term Brillouin-zone integration Basics Smearing method Tetrahedron method and its improvement Fermi surface plot

Total energy functional for DFT 𝐸 𝑡𝑜𝑡 =𝐸 𝜌 + 1 2 𝑅, 𝑅 ′ 𝑁 𝑐 𝝉, 𝝉 ′ 𝑁 𝑍 𝝉 𝑍 𝝉 ′ 1− 𝛿 𝑅 𝑅 ′ 𝛿 𝝉 𝝉 ′ 𝝉+𝑹− 𝝉 ′ − 𝑹 ′ 𝐸 𝜌 = 𝑑 3 𝑟𝜌 𝒓 𝑣 𝒓 + 𝐸 𝑢𝑛𝑖𝑣 𝜌 𝐸 𝑢𝑛𝑖𝑣 𝜌 = 𝑇 𝐾𝑆 𝜌 + 1 2 𝑑 3 𝑟 𝑑 3 𝑟 ′ 𝜌(𝒓)𝜌( 𝒓 ′ ) 𝒓− 𝒓 ′ + 𝐸 𝑋𝐶 𝜌 𝑇 𝐾𝑆 𝜌 = 𝑁 𝑐 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝑛 𝑑 3 𝑟 𝜑 𝑛𝒌 ∗ 𝑟 − 𝛁 2 2 𝜑 𝑛𝒌 𝑟 𝜑 𝑛𝒌 𝒓 = 1 𝑁 𝐶 𝑒 𝑖𝒌⋅𝒓 𝑢 𝑛𝒌 (𝒓) 𝑢 𝑛𝒌 𝒓 = 𝐺 𝑢 𝑛𝒌 𝑮 𝑒 𝑖𝑮⋅𝒓 𝑉 𝑢𝑐 = 𝑁 𝑐 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝑛 𝑮 𝒌+𝑮 2 2 𝑢 𝑛𝒌 𝑮 2 Local density approximation 𝐸 𝑋𝐶 𝜌 = 𝑑 3 𝑟𝜌 𝑟 𝜀 𝑋𝐶 𝜌 𝑟 = 𝑁 𝑐 𝑢𝑐 𝑑 3 𝑟𝑟𝜌 𝑟 𝜀 𝑋𝐶 𝜌 𝑟

Tutorial for total energy $ cd ~/pwdft/ $ git checkout master $ git pull $ make clean; make $ cd sample/Al/ $ ../../src/pwdft.x < scf.in Energy per u.c. [eV] Kinetic energy : 22.571740309226847 Hartree energy : 0.10954359264556501 rho*V : 14.630190122503379 Ewald eta [Bohr^-1] : 1.4221682587100493 Ewald grid (G) : 25 25 25 Ewald grid (R) : 2 2 2 Eward energy : -73.366857049902464 XC energy : -21.802851254893593 Total energy : -57.858234280420255 $ bash vol.sh

Hartree and atomic potential energy.F90 1 2 𝑑 3 𝑟 𝑑 3 𝑟 ′ 𝜌(𝒓)𝜌( 𝒓 ′ ) 𝒓− 𝒓 ′ = 1 2 𝑮, 𝑮 ′ 𝜌 𝑮 𝜌 𝑮 ′ 𝑑 3 𝑟 𝑑 3 𝑟 ′ 𝑒 𝑖𝑮⋅𝒓 𝑒 𝑖 𝑮 ′ ⋅ 𝒓 ′ 𝒓− 𝒓 ′ = 1 2 𝑮, 𝑮 ′ 𝜌 𝑮 𝜌 𝑮 ′ 𝑑 3 𝑟 ′ 𝑒 𝑖 𝑮+ 𝑮 ′ ⋅ 𝒓 ′ 𝑑 3 𝑟 𝑒 𝑖𝑮⋅ 𝒓− 𝒓 ′ 𝒓− 𝒓 ′ = 𝑁 𝑐 𝑉 𝑢𝑐 2 𝑮 𝜌 𝑮 𝜌 −𝑮 4𝜋 𝑮 𝟐 = 𝑁 𝑐 𝑉 𝑢𝑐 2 𝑮 𝜌 𝑮 2 4𝜋 𝑮 𝟐 lim 𝑮→0 𝑁 𝑐 𝑉 𝑢𝑐 2 4𝜋 𝑮 𝟐 𝑁 𝑉 𝑢𝑐 2 Atomic potential term 𝑑 3 𝑟𝜌 𝒓 𝑣 𝒓 = 𝑮, 𝑮 ′ 𝜌 𝑮 𝑣 𝑮 ′ 𝑑 3 𝑟 𝑒 𝑖𝑮⋅𝒓 𝑒 𝑖 𝑮 ′ ⋅ 𝒓 ′ = 𝑁 𝑐 𝑉 𝑢𝑐 𝑮, 𝑮 ′ 𝜌 𝑮 𝑣 −𝑮 − lim 𝑮→0 𝑁 𝑐 𝑉 𝑢𝑐 4𝜋 𝑮 𝟐 𝑁 𝑉 𝑢𝑐 2 Compensating divergent term

Ion-ion Coulomb repulsion 1 2 𝑅, 𝑅 ′ 𝑁 𝑐 𝝉, 𝝉 ′ 𝑁 𝑍 𝝉 𝑍 𝝉 ′ 1− 𝛿 𝑅 𝑅 ′ 𝛿 𝝉 𝝉 ′ 𝝉+𝑹− 𝝉 ′ − 𝑹 ′ = 𝑁 𝑐 2 𝑅 𝑁 𝑐 𝝉, 𝝉 ′ 𝑁 𝑍 𝝉 𝑍 𝝉 ′ 1− 𝛿 𝑅𝟎 𝛿 𝝉 𝝉 ′ 𝝉− 𝝉 ′ +𝑹 = 𝑁 𝑐 2 𝝉, 𝝉 ′ 𝑁 𝑍 𝝉 𝑍 𝝉 ′ 𝑅 𝑁 𝑐 1− 𝛿 𝑅𝟎 𝛿 𝝉 𝝉 ′ 𝝉− 𝝉 ′ +𝑹 𝑑 3 𝑟 𝑒 −𝑖𝑮⋅𝒓 𝒓 𝑅 𝑁 𝑐 1 𝒓+𝑹 = 𝐺 𝑒 𝑖𝑮⋅𝒓 𝑢𝑐 𝑑 3 𝑟 ′ 𝑉 𝑢𝑐 𝑒 −𝑖𝑮⋅ 𝒓 ′ 𝑅 𝑁 𝑐 1 𝒓 ′ +𝑹 = 𝐺 𝑒 𝑖𝑮⋅𝒓 4𝜋 𝑉 𝑢𝑐 𝑮 2 = 𝑁 𝑐 2 𝝉, 𝝉 ′ 𝑁 𝑍 𝝉 𝑍 𝝉 ′ 𝐺 𝑒 𝑖𝑮⋅ 𝝉− 𝝉 ′ 4𝜋 𝑉 𝑢𝑐 𝑮 2 − 𝑅 𝑁 𝑐 𝛿 𝑅𝟎 𝛿 𝝉 𝝉 ′ 𝝉− 𝝉 ′ +𝑹 𝑅 1 𝑹 𝐺 𝑒 𝑖𝑮⋅𝒓 𝑮 2 lim 𝑮→0 𝑁 𝑐 𝑉 𝑢𝑐 2 4𝜋 𝑮 𝟐 𝑁 𝑉 𝑢𝑐 2 Slow decay in sum

Ewald's method (1) 1 𝒓+𝑹 = 2 𝜋 0 ∞ 𝑑𝑥 𝑒 − 𝒓+𝑹 2 𝑥 2 1 𝒓+𝑹 = 2 𝜋 0 ∞ 𝑑𝑥 𝑒 − 𝒓+𝑹 2 𝑥 2 𝑹 𝑁 𝑐 𝑒 − 𝒓+𝑹 2 𝑥 2 = 𝑮 𝑒 𝑖𝑮⋅𝒓 𝑢𝑐 𝑑 3 𝑟 ′ 𝑉 𝑢𝑐 𝑒 −𝑖𝑮⋅ 𝒓 ′ 𝑹 𝑁 𝑐 𝑒 − 𝒓 ′ +𝑹 2 𝑥 2 = 𝑮 𝑒 𝑖𝑮⋅𝒓 𝜋 3 2 𝑒 − 𝑮 2 4 𝑥 2 𝑉 𝑢𝑐 𝑥 3 𝑁 𝑐 2 𝝉, 𝝉 ′ 𝑁 𝑍 𝝉 𝑍 𝝉 ′ 𝑅 𝑁 𝑐 1− 𝛿 𝑅𝟎 𝛿 𝝉 𝝉 ′ 𝝉− 𝝉 ′ +𝑹 = 𝑁 𝑐 2 𝝉, 𝝉 ′ 𝑁 𝑍 𝝉 𝑍 𝝉 ′ 𝑅 𝑁 𝑐 2 𝜋 𝜂 ∞ 𝑑𝑥 𝑒 − 𝝉− 𝝉 ′ +𝑹 2 𝑥 2 − 𝛿 𝑅𝟎 𝛿 𝝉 𝝉 ′ 0 ∞ 𝑑𝑥 + 𝑁 𝑐 2 𝝉, 𝝉 ′ 𝑁 𝑍 𝝉 𝑍 𝝉 ′ 𝑮 𝑒 𝑖𝑮⋅ 𝝉− 𝝉 ′ 2𝜋 𝑉 𝑢𝑐 0 𝜂 𝑑𝑥 𝑥 3 𝑒 − 𝑮 2 4 𝑥 2 2𝑒 − 𝑮 2 4 𝜂 2 𝑮 2 cos 𝑮⋅ 𝝉− 𝝉 ′

Ewald's method (2) Complementary error function = 𝑁 𝑐 2 𝝉, 𝝉 ′ 𝑁 𝑠 𝑍 𝝉 𝑍 𝝉 ′ 𝑅 𝑁 𝑐 1− 𝛿 𝑅𝟎 𝛿 𝝉 𝝉 ′ 2 𝜋 𝜂 ∞ 𝑑𝑥 𝑒 − 𝝉− 𝝉 ′ +𝑹 2 𝑥 2 − 𝑁 𝑐 2 𝝉 𝑁 𝑍 𝝉 2 2 𝜋 0 𝜂 𝑑𝑥 − 𝑁 𝑐 𝝉 𝑁 𝜂 𝑍 𝝉 2 𝜋 erfc 𝝉− 𝝉 ′ +𝑹 𝜂 𝝉− 𝝉 ′ +𝑹 + 𝑁 𝑐 2 𝝉, 𝝉 ′ 𝑁 𝑍 𝝉 𝑍 𝝉 ′ 𝑮≠𝟎 cos 𝑮⋅ 𝝉− 𝝉 ′ 4𝜋𝑒 − 𝑮 2 4 𝜂 2 𝑉 𝑢𝑐 𝑮 2 − 𝑁 𝑐 2 𝜋 𝑁 2 𝑉 𝑢𝑐 𝜂 2 + lim 𝑮→0 𝑁 𝑐 𝑉 𝑢𝑐 2 4𝜋 𝑮 𝟐 𝑁 𝑉 𝑢𝑐 2

Optimize lattice constant ($ bash vol.sh) $ grep "Total energy" scf*.out | \ sed -e 's/scf//g' -e 's/.out://g' > ene.dat $ gnuplot gnuplot> set xlabel "Lattice constant [Ang]" gnuplot> set ylabel "Total energy [eV]" gnuplot> plot "ene.dat" u 1:5 w lp

Brillouin-zone integration 𝜌 𝑟 = 𝒌 𝑛 𝜑 𝑛𝒌 𝑟 2 𝜃 𝜀 𝐹 − 𝜀 𝑛𝑘 Born-von Karman's boundary condition : 𝜑 𝑛𝒌 𝑟+𝐿 = 𝜑 𝑛𝒌 𝑟 :𝐿→∞ 2𝜋 𝐿 3 = 2𝜋 3 𝑁 𝑐 𝑉 𝑢𝑐 The size of each state in the reciprocal space : 𝒌 ⋯ = 𝐵𝑍 𝑑 3 𝑘 2𝜋 3 /( 𝑁 𝑐 𝑉 𝑢𝑐 ) ⋯ = 𝑁 𝑐 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 ⋯ 2𝜋 3 𝑉 𝑢𝑐 ≡ 𝑉 𝐵𝑍 = 𝒃 1 × 𝒃 2 ⋅ 𝒃 3 𝑉 𝑢𝑐 = 𝒂 1 × 𝒂 2 ⋅ 𝒂 3 𝜌 𝑟 = 𝑁 𝑐 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝑛 𝜑 𝑛𝒌 𝑟 2 𝜃 𝜀 𝐹 − 𝜀 𝑛𝑘 = 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝑛 𝑢 𝑛𝒌 𝑟 2 𝜃 𝜀 𝐹 − 𝜀 𝑛𝑘

𝒌-integration with 𝜃 𝜀 𝑘 or 𝛿 𝜀 𝑘 Charge density Density of states 𝜌 𝑟 = 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝑛 𝑢 𝑛𝒌 𝑟 2 𝜃 𝜀 𝐹 − 𝜀 𝑛𝑘 𝐷 𝜀 = 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝑛 𝛿 𝜀− 𝜀 𝑛𝑘 𝑁 𝒌 Using 𝜃( 𝜀 𝐹 − 𝜀 𝑛𝑘 ) as is Too many k points are required. Broadening M. Methfessel, A. T. Paxton, Phys. Rev. B 40, 3616 (1989). Replace 𝜃( 𝜀 𝐹 − 𝜀 𝑛𝑘 ) with a smeared function such as the error function. Tetrahedron O. Jepsen and O. K. Andersen, Solid State Commun. 9, 1763 (1971).

Why we need to reduce 𝑘-points? E.g. 1 DFT calculation of crystals with plane wave and pseudopotencial. 𝑣 𝐾𝑆 𝒓 𝑢 𝑛𝒌 𝒓 (for all orbitals) O 𝑁 𝒌 × 𝑁 𝑏 × 𝑁 𝑃𝑊 log 𝑁 𝑃𝑊 Subspace diagonalization O 𝑁 𝒌 × 𝑁 𝑏 3 Update 𝑢 𝑛𝒌 𝑮 O 𝑁 𝒌 × 𝑁 𝑏 2 × 𝑁 𝑃𝑊 E.g. 2 Hartree-Fock, hybrid DFT, TC, GW 𝑣 𝐹𝑜𝑐𝑘 𝑢 𝑛𝒌 𝒓 (for all orbitals) O 𝑁 𝒌 2 × 𝑁 𝑏 2 × 𝑁 𝑃𝑊 log 𝑁 𝑃𝑊 ※ 𝑁 𝑏 ~ The number of electrons The reduction of k-points without loss of accuracy is the best way for efficient calculation.

Broadening method We can calculate only on discrete k-points. 𝜀 𝒌 Replace 𝛿(𝑥) with smeared function such as (Hermite) Gaussian. 𝛿 𝑥 = 𝑛=0 ∞ −1 𝑛 𝑛!4 𝑛 𝜋 𝐻 2𝑛 𝑥 𝜎 𝑒 − 𝑥 2 / 𝜎 2 M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989). This method becomes worse when smeared function not cover all energy range. 𝜎 𝒌 True band structure

Interpolation method libtetrabz_occ_main@libtetrabz/libtetrabz_occ_mod Interpolation method libtetrabz_occ_main@libtetrabz/libtetrabz_occ_mod.F90 𝜀 1 O. Jepsen and O. K. Andersen, Solid State Commun. 9, 1763 (1971) 𝜀 4 𝑉 𝑇 𝑉 𝑇 = 𝑉 𝐵𝑍 6 𝑁 𝑘 𝜀 2 𝜀 3 When we use linear interpolation, the next is satisfied. If 𝜀 1 ≤𝜀≤ 𝜀 2 ≤ 𝜀 3 ≤ 𝜀 4 , 𝑇 𝜃 𝜀− 𝜀 𝑘 = 𝑉 𝜀 𝑘 ≤𝜀 ≈ 𝑉 𝑇 𝜀− 𝜀 1 𝜀 2 − 𝜀 1 𝜀− 𝜀 1 𝜀 3 − 𝜀 1 𝜀− 𝜀 1 𝜀 4 − 𝜀 1 𝑇 𝛿 𝜀− 𝜀 𝑘 = 𝜕 𝜕𝜀 𝑇 𝜃 𝜀− 𝜀 𝑘 These expressions are not applicable for higher order (2nd , 3rd ・・・) interpolation ! If 𝜀 1 ≤ 𝜀 2 ≤𝜀≤ 𝜀 3 ≤ 𝜀 4 , ⋯ If 𝜀 1 ≤ 𝜀 2 ≤ 𝜀 3 ≤𝜀≤ 𝜀 4 , ⋯ If 𝜀 1 ≤ 𝜀 2 ≤ 𝜀 3 ≤ 𝜀 4 ≤𝜀, ⋯

Systematic error in tetrahedron method (Traditional) tetrahedron method linearly interpolate the function of k (such as wave function, KS energy, etc. ). T T If the sign of curvature of these function is always negative, we overestimete. Not Interpolating But Fitting

Optimized tetrahedron method M. Kawamura et al., Phys. Rev. B 89, 094515 (2014). Optimized tetrahedron method Conventional tetrahedron method T T 𝒌 𝒌 Higher order interpolation of 𝜀 𝑘 , etc. Fit this function into a linear function in the tetrahedron Tetrahedron method with fitted linear function Linear interpolation of 𝜀 𝑘 , etc. Tetrahedron method with interpolated linear function

Library of tetrahedron method LibTetraBZ http://libtetrabz.osdn.jp/ MPI + OpenMP (Thread safe) Fortran/C/C++ 𝑛, 𝑛 ′ 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝛿 𝜀 𝐹 − 𝜀 𝑛𝒌 𝛿 𝜀 𝐹 − 𝜀 𝑛 ′ 𝒌 ′ 𝑋 𝑛 𝑛 ′ 𝒌 𝑛 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝛿 𝜀− 𝜀 𝑛𝒌 𝑋 𝑛𝒌 𝑛, 𝑛 ′ 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝜃 𝜀 𝑛 ′ 𝒌 ′ − 𝜀 𝐹 𝜃 𝜀 𝐹 − 𝜀 𝑛𝒌 𝑋 𝑛 𝑛 ′ 𝒌 𝑛 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝜃 𝜀− 𝜀 𝑛𝒌 𝑋 𝑛𝒌 𝑛, 𝑛 ′ 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝜃 𝜀 𝑛 ′ 𝒌 ′ − 𝜀 𝐹 𝜃 𝜀 𝐹 − 𝜀 𝑛𝒌 𝜀 𝑛 ′ 𝒌 ′ − 𝜀 𝑛𝒌 𝑋 𝑛 𝑛 ′ 𝒌 𝑛, 𝑛 ′ 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝜃 𝜀 𝐹 − 𝜀 𝑛 ′ 𝒌 ′ 𝜃 𝜀 𝐹 − 𝜀 𝑛𝒌 𝛿 𝜀 𝑛 ′ 𝒌 ′ − 𝜀 𝑛𝒌 +𝜔 𝑋 𝑛 𝑛 ′ 𝒌 (𝜔) 𝑛, 𝑛 ′ 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝜃 𝜀 𝐹 − 𝜀 𝑛 ′ 𝒌 ′ 𝜃 𝜀 𝐹 − 𝜀 𝑛𝒌 𝜀 𝑛 ′ 𝒌 ′ − 𝜀 𝑛𝒌 +𝑖𝜔 𝑋 𝑛 𝑛 ′ 𝒌 (𝜔)

LibTetraBZ 𝜀 𝑘 =− cos 𝑘 𝑥 − cos 𝑘 𝑦 − cos 𝑘 𝑧 $ cd ~/ $ git clone git://git.osdn.net/gitroot/libtetrabz/libtetrabz.git $ cd libtetrabz $ touch Makefile.in aclocal.m4 configure $ ./configure; make $ cd example $ ./dos.x Which tetrahedron method ?(1 = Linear, 2 = Optimized): 2⏎ k-point mesh ?: 10⏎ $ gnuplot gnuplot> set xlabel "Energy" gnuplot> set ylabel "DOS" gnuplot> plot "dos.dat" w l 𝜀 𝑘 =− cos 𝑘 𝑥 − cos 𝑘 𝑦 − cos 𝑘 𝑧

Fermi energy with bisection method libtetrabz_fermieng@libtetrabz/src/libtetrabz_occ_mod.F90 𝑁= 𝑛 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝜃 𝜀 𝐹 − 𝜀 𝑛𝒌 𝜀 𝑢𝑝 = max { 𝜀 𝑛𝑘 } 𝜀 𝑙𝑜𝑤 = min { 𝜀 𝑛𝑘 } do iteration 𝜀 𝐹 = 𝜀 𝑢𝑝 + 𝜀 𝑙𝑜𝑤 /2 𝑁 = 𝑛 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝜃 𝜀 𝐹 − 𝜀 𝑛𝒌 if 𝑁 <𝑁 is small → Finish else if 𝑁 <𝑁 𝜀 𝑙𝑜𝑤 = 𝜀 𝐹 else if 𝑁 >𝑁 𝜀 𝑢𝑝 = 𝜀 𝐹 end if end do iteration

Iso surface with tetrahedron method FermiSurfer Input file format http://fermisurfer.osdn.jp/en/_build/html/fermisf_input_en.html

Report problem 3 (1) Modify dos.F90 or dos_c.c to compute DOS with Gaussian broadening method. 𝐵𝑍 𝑑 3 𝑘 𝑉 𝐵𝑍 𝛿 𝜀− 𝜀 𝒌 ≈ 1 𝑁 𝑘 𝑘 𝑁 𝑘 1 𝜎 𝜋 𝑒 − 𝜀− 𝜀 𝒌 𝜎 2 Plot DOS at each 𝑁 𝑘 and 𝜎, then compare with tetrahedron methods (Linear and optimized) Note: Replace call libtetrabz_fermieng(ltetra,bvec,nb,nge,eig,ngw,wght,ef,nelec) to ef = 0.0d0 (2) Output 𝜀 𝒌 and 𝛁 𝒌 𝜀 𝒌 in the FermiSurfer format (vf.frmsf). Modified code should be submitted as a diff file generated by $ cd ~/libtetrabz/ $ git add example $ git commit $ git show > 12212018.diff

Today's summary Total energy Hartree, atomic, XC, kinetic, Ewald energy Coulomb repulsion of periodically aligned ions is computed efficiently with Ewald's method. Brillouin zone integration Tetrahedron method Optimized tetrahedron method Library Fermi surface