9.2: Translations.

Slides:



Advertisements
Similar presentations
An isometry is a transformation that does not change the shape or size of a figure. Reflections, translations, and rotations are all isometries. Isometries.
Advertisements

Rotations Warm Up Lesson Presentation Lesson Quiz
12-7 Dilations Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
12-3 Rotations Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
Reflections 9-1 Warm Up Lesson Presentation Lesson Quiz
1.5 Reflections and Line Symmetry Warm Up. 1.5 Reflections and Line Symmetry Objectives Identify and draw reflections.
12-1 Reflections Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
Translations 9-2 Warm Up Lesson Presentation Lesson Quiz
S ECTION 9.2 Translations. In Lesson 4.7, you learned that a translation or slide is a transformation that moves all points of a figure the same distance.
Translations Warm Up Lesson Presentation Lesson Quiz
Holt Geometry 12-1 Reflections A transformation is a change in the position, size, or shape of a figure. The original figure is called the preimage. The.
Holt Geometry 12-1 Reflections 12-1 Reflections Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 12-7 Dilations 12-7 Dilations Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Chapter reflections. Objectives Identify and draw reflections.
Translations 12-2 Warm Up Lesson Presentation Lesson Quiz
12-1 Reflections Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
9-2 Translations Holt McDougal Geometry Holt Geometry.
Holt McDougal Geometry 9-2 Translations 9-2 Translations Holt GeometryHolt McDougal Geometry.
Translations Do Now Find the coordinates of each image 1.R x-axis (A) 2.R y-axis (B) 3.R y = 1 (C) 4.R y = –1 (E) 5.R x = 2 (F)
Dilations 9-7 Warm Up Lesson Presentation Lesson Quiz
Entry Task 1. Translate the triangle with vertices A(2, –1), B(4, 3), and C(–5, 4) along the vector. 2. Given the points (-3,2) and (6,-1) reflect them.
12-3 Rotations Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
Rotations 9-3 Warm Up Lesson Presentation Lesson Quiz
Rotations 9-3 Warm Up Lesson Presentation Lesson Quiz
9.4 Compositions of Transformations
4.1 Vocabulary Transformation Preimage Image Isometry
Reflections 9-1 Warm Up Lesson Presentation Lesson Quiz
12-7 Dilations Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
Warm Up Find the coordinates of the image of ∆ABC with vertices A(3, 4), B(–1, 4), and C(5, –2), after each reflection. 1. across the x-axis 2. across.
Translations 9-2 Warm Up Lesson Presentation Lesson Quiz
Rotations 9-3 Warm Up Lesson Presentation Lesson Quiz
Reflections 9-1 Warm Up Lesson Presentation Lesson Quiz
Dilations 9-7 Warm Up Lesson Presentation Lesson Quiz
Translations 12-2 Warm Up Lesson Presentation Lesson Quiz
Translations 12-2 Warm Up Lesson Presentation Lesson Quiz
Translations 9-2 Warm Up Lesson Presentation Lesson Quiz
12-7 Dilations Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
Rotations Warm Up Lesson Presentation Lesson Quiz
Reflections Warm Up Lesson Presentation Lesson Quiz
4.2 Vocabulary Remember…Transformation, Preimage, Image,
Translations 9-2 Warm Up Lesson Presentation Lesson Quiz
Objective Identify and draw reflections..
12-7 Dilations Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
12-7 Dilations Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
Translations Warm Up Lesson Presentation Lesson Quiz
9.1: Reflections.
Reflections 9-1 Warm Up Lesson Presentation Lesson Quiz
Rotations Warm Up Lesson Presentation Lesson Quiz
12-1 Reflections Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
9.3: Rotations.
12-1 Reflections Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
4.5 Vocabulary dilation center of dilation enlargement reduction
Vocabulary transformation reflection preimage rotation
Objective Identify and draw rotations..
Reflections 9-1 Warm Up Lesson Presentation Lesson Quiz
Objective Identify and draw translations..
Translations 12-2 Warm Up Lesson Presentation Lesson Quiz
Translations Warm Up Lesson Presentation Lesson Quiz
Holt McDougal Geometry 9-2 Translations 9-2 Translations Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
12-3 Rotations Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
Reflections Warm Up Lesson Presentation Lesson Quiz
Reflections Warm Up Lesson Presentation Lesson Quiz
Translations Warm Up Lesson Presentation Lesson Quiz
12.2 Translations.
Objective Identify and draw rotations..
Objective Identify and draw reflections..
12-3 Rotations Warm Up Lesson Presentation Lesson Quiz Holt Geometry.
Translations Warm Up Lesson Presentation Lesson Quiz
Objective Identify and draw dilations..
Presentation transcript:

9.2: Translations

A translation is a transformation where all the points of a figure are moved the same distance in the same direction. A translation is an isometry, so the image of a translated figure is congruent to the preimage.

Example 1: Identifying Translations Tell whether each transformation appears to be a translation. Explain. A. B.

Check It Out! Example 1 Tell whether each transformation appears to be a translation. a. b.

Example 2: Drawing Translations Copy the quadrilateral and the translation vector. Draw the translation along Step 1 Draw a line parallel to the vector through each vertex of the triangle.

Example 2 Continued Step 2 Measure the length of the vector. Then, from each vertex mark off the distance in the same direction as the vector, on each of the parallel lines. Step 3 Connect the images of the vertices.

Recall that a vector in the coordinate plane can be written as <a, b>, where a is the horizontal change and b is the vertical change from the initial point to the terminal point.

Example 3: Drawing Translations in the Coordinate Plane Translate the triangle with vertices D(–3, –1), E(5, –3), and F(–2, –2) along the vector <3, –1>. The image of (x, y) is (x + 3, y – 1). D(–3, –1) D’(–3 + 3, –1 – 1) = D’(0, –2) E(5, –3) E’( ) = E’( ) F(–2, –2) F’( ) = F’( ) Graph the preimage and the image.

Check It Out! Example 3 Translate the quadrilateral with vertices R(2, 5), S(0, 2), T(1,–1), and U(3, 1) along the vector <–3, –3>. The image of (x, y) is (x – 3, y – 3). R(2, 5) R’(2 – 3, 5 – 3) = R’(–1, 2) S(0, 2) S’( ) = S’( ) T(1, –1) T’( ) = T’( ) U(3, 1) U’( ) = U’( ) Graph the preimage and the image.

Check It Out! Example 4 What if…? Suppose another drummer started at the center of the field and marched along the same vectors as at right. What would this drummer’s final position be? The drummer’s starting coordinates are (0, 0).

Lesson Quiz: Part I 1. Tell whether the transformation appears to be a translation. 2. Copy the triangle and the translation vector. Draw the translation of the triangle along

Lesson Quiz: Part II Translate the figure with the given vertices along the given vector. 3. G(8, 2), H(–4, 5), I(3,–1); <–2, 0> 4. S(0, –7), T(–4, 4), U(–5, 2), V(8, 1); <–4, 5>