Volume 21, Issue 4, Pages (October 2017)

Slides:



Advertisements
Similar presentations
Volume 21, Issue 12, Pages (December 2017)
Advertisements

Lori Redmond, Amir H. Kashani, Anirvan Ghosh  Neuron 
Volume 27, Issue 22, Pages e5 (November 2017)
Volume 24, Issue 9, Pages e4 (August 2018)
Identification of E2/E3 Ubiquitinating Enzymes and Caspase Activity Regulating Drosophila Sensory Neuron Dendrite Pruning  Chay T. Kuo, Sijun Zhu, Susan.
Nociceptor-Enriched Genes Required for Normal Thermal Nociception
Volume 72, Issue 4, Pages (November 2011)
Jung Hwan Kim, Xin Wang, Rosemary Coolon, Bing Ye  Neuron 
Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons  Kassandra M. Ori-McKenney, Lily Yeh.
Volume 138, Issue 6, Pages (September 2009)
The Role of PPK26 in Drosophila Larval Mechanical Nociception
Volume 2, Issue 5, Pages (November 2012)
Melissa Hernandez-Fleming, Ethan W. Rohrbach, Greg J. Bashaw 
Volume 7, Issue 2, Pages (August 2004)
Volume 16, Issue 9, Pages (August 2016)
Krüppel Mediates the Selective Rebalancing of Ion Channel Expression
Li E. Cheng, Wei Song, Loren L. Looger, Lily Yeh Jan, Yuh Nung Jan 
Volume 23, Issue 3, Pages (February 2013)
Volume 13, Issue 4, Pages (October 2007)
Volume 42, Issue 1, Pages (April 2004)
Volume 18, Issue 4, Pages (April 2010)
Molecular Mechanisms Regulating the Defects in Fragile X Syndrome Neurons Derived from Human Pluripotent Stem Cells  Tomer Halevy, Christian Czech, Nissim.
Volume 15, Issue 2, Pages (April 2016)
BTB/POZ-Zinc Finger Protein Abrupt Suppresses Dendritic Branching in a Neuronal Subtype-Specific and Dosage-Dependent Manner  Wenjun Li, Fay Wang, Laurent.
Volume 130, Issue 4, Pages (August 2007)
Γ-Protocadherins Control Cortical Dendrite Arborization by Regulating the Activity of a FAK/PKC/MARCKS Signaling Pathway  Andrew M. Garrett, Dietmar Schreiner,
Dendrites of Distinct Classes of Drosophila Sensory Neurons Show Different Capacities for Homotypic Repulsion  Wesley B. Grueber, Bing Ye, Adrian W. Moore,
Volume 90, Issue 3, Pages (May 2016)
Volume 18, Issue 11, Pages (March 2017)
The Snail Family Member Worniu Is Continuously Required in Neuroblasts to Prevent Elav-Induced Premature Differentiation  Sen-Lin Lai, Michael R. Miller,
Regulation of Autocrine Signaling in Subsets of Sympathetic Neurons Has Regional Effects on Tissue Innervation  Thomas G. McWilliams, Laura Howard, Sean.
Volume 19, Issue 24, Pages (December 2009)
Volume 9, Issue 4, Pages (November 2014)
Volume 14, Issue 4, Pages (February 2004)
Volume 82, Issue 3, Pages (May 2014)
Volume 16, Issue 9, Pages (August 2016)
Volume 25, Issue 11, Pages (June 2015)
Whole-Genome Analysis of Muscle Founder Cells Implicates the Chromatin Regulator Sin3A in Muscle Identity  Krista C. Dobi, Marc S. Halfon, Mary K. Baylies 
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
Control of Dendritic Field Formation in Drosophila
Volume 22, Issue 7, Pages (February 2018)
Jillian L. Brechbiel, Elizabeth R. Gavis  Current Biology 
Benjamin J. Matthews, Wesley B. Grueber  Current Biology 
Volume 9, Issue 4, Pages (November 2014)
SMN Is Required for Sensory-Motor Circuit Function in Drosophila
Pallavi Lamba, Diana Bilodeau-Wentworth, Patrick Emery, Yong Zhang 
Volume 14, Issue 7, Pages (February 2016)
Tyson J. Edwards, Marc Hammarlund  Cell Reports 
Volume 27, Issue 11, Pages e4 (June 2017)
Franziska Aurich, Christian Dahmann  Cell Reports 
Volume 6, Issue 5, Pages (March 2014)
Volume 17, Issue 20, Pages (October 2007)
Volume 12, Issue 10, Pages (September 2015)
Volume 17, Issue 1, Pages (September 2016)
Volume 17, Issue 18, Pages (September 2007)
Volume 17, Issue 2, Pages (October 2016)
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Zeenna A. Stapper, Thomas R. Jahn  Cell Reports 
Volume 16, Issue 9, Pages (August 2016)
Teemu P. Miettinen, Mikael Björklund  Cell Reports 
Control of Dendritic Field Formation in Drosophila
Volume 22, Issue 19, Pages (October 2012)
Volume 16, Issue 16, Pages (August 2006)
Piezo-like Gene Regulates Locomotion in Drosophila Larvae
Volume 9, Issue 6, Pages (December 2017)
Volume 16, Issue 16, Pages (August 2006)
Fig. 5 C9orf72 knockdown disrupts autophagy induction.
Volume 72, Issue 4, Pages (November 2011)
MRT, Functioning with NURF Complex, Regulates Lipid Droplet Size
Different Levels of the Homeodomain Protein Cut Regulate Distinct Dendrite Branching Patterns of Drosophila Multidendritic Neurons  Wesley B Grueber,
Presentation transcript:

Volume 21, Issue 4, Pages 859-866 (October 2017) Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons  Shan Meltzer, Joshua A. Bagley, Gerardo Lopez Perez, Caitlin E. O’Brien, Laura DeVault, Yanmeng Guo, Lily Yeh Jan, Yuh-Nung Jan  Cell Reports  Volume 21, Issue 4, Pages 859-866 (October 2017) DOI: 10.1016/j.celrep.2017.09.089 Copyright © 2017 The Author(s) Terms and Conditions

Cell Reports 2017 21, 859-866DOI: (10.1016/j.celrep.2017.09.089) Copyright © 2017 The Author(s) Terms and Conditions

Figure 1 EAS Is Required in Class IV da Neurons for Dendrite Morphogenesis (A–D) Sample images showing dendrite morphology for wild-type (A), easKO(B), eas1(C), and neural eas RNAi (D). (E and F) Quantification of the number of branches (E) and total dendritic length (F) at 48, 72, 96, and 120 hr AEL in wild-type (n = 6, 6, 6, and 10, respectively), easKO (n = 7, 6, 6, and 9, respectively), and eas1 mutants (n = 6). Student’s t tests were used to compare between wild-type and easKO mutants at 48, 72, and 96 hr AEL; one-way ANOVA analysis was used for wild-type, eas1, and easKO mutants at 120 hr AEL. (G) Sholl analysis showing decreased complexity of the dendritic arbor for the indicated genotypes (n = 5 per genotype). (H and I) Quantification of the number of branches (H) and total dendritic length (I) for the indicated genotypes (n = 7 and 5 for wild-type and easKO + ppk > eas, respectively; n = 6 for all of the other genotypes). (J–L) Sample images showing dendrite morphology for RNAi control (J), pect RNAi (K), and bbc RNAi (L). (M and N) Quantification of the total dendritic length (M) and number of branches (N) for neuroal pect and bbc RNAi, two other critical genes that act together with eas in the CDP-ethanolamine pathway for PE synthesis (n = 6, 6, and 5 for control, pect RNAi, and bbc RNAi, respectively). See also Figures S1 and S2. Scale bars represent 30 μm. ns, not significant; ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 for all figures. Cell Reports 2017 21, 859-866DOI: (10.1016/j.celrep.2017.09.089) Copyright © 2017 The Author(s) Terms and Conditions

Figure 2 EAS Regulates Terminal Dendrite Growth Dynamics (A–F) Sample images showing dendrite morphology for wild-type animals at 72 hr (A) and 76 hr (B) AEL. Sample images showing dendrite morphology for easKO mutants at 72 hr (D) and 76 hr (E) AEL. Branch dynamics are depicted in traces for wild-type animals (C) and easKO mutants (F). Increased and decreased terminal branch regions are marked in green and magenta, respectively. (G–I) Quantification of fractions of growing (G) and retracting (I) terminal dendrites, as well as dendrite growth/retraction ratios (I) for the indicated genotypes, showing decreases of dendrite stability and overall dendrite growth in easKO mutants. Scale bars represent 5 μm. Student’s t test was used. n = 10 neurons per genotype. Cell Reports 2017 21, 859-866DOI: (10.1016/j.celrep.2017.09.089) Copyright © 2017 The Author(s) Terms and Conditions

Figure 3 Aberrantly High Level of SREBP Transcriptional Activity Contributes to the Dendrite Morphogenesis Defects in easKO Mutants (A–C) Sample images showing dendrite morphology for wild-type (A), ppk>srebp.1-452 (B), and neuronal srebp RNAi (C). (D and E) Quantification of the total dendritic length (D) and number of branches (E) for neurons expressing constitutively active forms of SREBP (srebp.1–452), full-length SREBP, and RNAi construct targeting SREBP (n = 5 for ppk > srebp; n = 6 for all of the other genotypes). (F and G) Western blot (F) and quantification (G) of larval brains showing the full-length (Fl-SREBP) and constitutively active, mature (m-SREBP) forms of SREBP protein in wild-type and easKO mutants. Tubulin was used as a loading control. (H–N) Sample images showing dendrite morphology for easKO(H), easKO;srebp/+(I), easKO+ppk>acc RNAi (J), easKO+ppk>fas RNAi (K), easKO;acsl/+ (L), easKO;acs/+ (M), easKO;ppk>srebp (N). (O and P) Quantification of the total dendritic length (O) and number of branches (P) for the indicated genotypes. One-way ANOVA tests were used. Results of comparison between easKO mutants and each genotype are labeled on the top of each column (n = 7 for wild-type and n = 6 for easKO mutants). Scale bars represent 30 μm. Cell Reports 2017 21, 859-866DOI: (10.1016/j.celrep.2017.09.089) Copyright © 2017 The Author(s) Terms and Conditions

Figure 4 Reducing the Level of cac Partially Suppresses Dendrite Morphogenesis Defects in easKO Mutants (A–C) Sample images showing dendrite morphology for easKO mutants (A) (n = 9), easKO mutants with neuronal-specific cac knocked down (B) (n = 6), and wild-type animals with neuronal-specific cac knocked down (C) (n = 6) (n = 10 for wild-type). (D and E) Quantification of the total dendritic length (D) and number of branches (E), showing that reducing the level of cac partially suppresses the dendrite growth defects in easKO mutants. One-way ANOVA tests were used. See also Figure S3. Scale bars represent 30 μm. Cell Reports 2017 21, 859-866DOI: (10.1016/j.celrep.2017.09.089) Copyright © 2017 The Author(s) Terms and Conditions