Logarithmau 3 Logarithms 3 @mathemateg /adolygumathemateg.

Slides:



Advertisements
Similar presentations
Graphical Analysis of Data
Advertisements

Higher Unit 3 Exponential & Log Graphs
Click to Start Higher Maths Unit 3 Chapter 3 Logarithms Experiment & Theory.
5-7: Scatter Plots & Lines of Best Fit. What is a scatter plot?  A graph in which two sets of data are plotted as ordered pairs  When looking at the.
Graphs of Exponential and Logarithmic Functions
Copyright © 2006 Pearson Addison-Wesley. All rights reserved. Lecture 6: Supplemental A Slightly More Technical Discussion of Logarithms (Including the.
Economics 2301 Lecture 8 Logarithms. Base 2 and Base 10 Logarithms Base 2 LogarithmsBase 10 Logarithms Log 2 (0.25)=-2since 2 -2 =1/4Log 10 (0.01)=-2since.
Exponential and Logarithmic Functions Logarithmic Functions EXPONENTIAL AND LOGARITHMIC FUNCTIONS Objectives Graph logarithmic functions. Evaluate.
How do scientists show the results of investigations?
EXPONENTIAL AND LOGARITHMIC FUNCTIONS
GRAPHING LINEAR FUNCTIONS Graphing Straight Lines This presentation looks at two methods for graphing a line. 1.By finding and plotting points 2.Using.
Logarithmic Functions
49: A Practical Application of Log Laws © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
Lesson 12-2 Exponential & Logarithmic Functions
Graphical Analysis in Excel EGN 1006 – Introduction to Engineering.
NI CHEWCH DDEFNYDDIO CYFRIFIANNELL YN Y PAPUR HWN CALCULATORS ARE NOT TO BE USED FOR THIS PAPER Mathemateg Haen Ganolradd Papur 1 Tachwedd 2002 (2 awr)
Making and Using Graphs n Graphing data n Relationships n Slope.
Polynomial Regression Section Starter Johnny’s Pizza Shack sells pizzas in seven different sizes. The diameters and costs are shown in the.
SECTIONS B Chapter 2. Objectives To draw scatter plots. To find and use prediction equations. Using a graphing calculator to graph lines of regression.
Scientific Method. Experiment A process used to gather observations and test hypothesis.
Table of Contents Logarithmic Function - Graphing Example Sketch the graph of the logarithmic function... First, write the function in its exponential.
Re-Expressing Data. Scatter Plot of: Weight of Vehicle vs. Fuel Efficiency Residual Plot of: Weight of Vehicle vs. Fuel Efficiency.
Cymedr ac Amrywiant Hapnewinynau Di-dor Er mwyn darganfod beth yw cymedr neu gwerth disgwyliedig hapnewidyn di-dor, rhaid i ni luosi’r ffwythiant dwysedd.
Exponential and log graphs Logarithms Identify all the graphs in the diagrams below. (2,16) (0,1) 0 y x  (3,125) 0 y x (0,1)  0 y 1 (4,16) x  0 y.
Scatter Plots. Standard: 8.SP.1 I can construct and interpret scatterplots.
Equations of Straight Line Graphs. Graphs parallel to the y -axis All graphs of the form x = c, where c is any number, will be parallel to the y -axis.
Y dosraniad Poisson fel brasamcan i’r Binomial. Pan mae’r nifer y treialon mewn dosraniad Binomial yn fawr iawn, a’r tebygolrwydd i lwyddo yn fach iawn,
Plot Diagram.
Scatter Plots and Lines of Fit
Derivatives of exponentials and Logarithms
5.7 – Curve Fitting with Quadratic Models
Rules for Graphing.
How to answer extended questions? Sut i ateb cwestiynau estynedig?
MATH 2311 Section 5.5.
Straight Lines Objectives:
Brîff 7 Munud - Rheoliadau Diogelu Data Cyffredinol (GDPR) General Data Protection Regulations (GDPR) - 7 Minute Briefing.
Lesson 8: Graphing Multi-Variable Equations
Scientific Method.
Y Dosraniad Poisson The Poisson Distribution
The Arrhenius equation
Geometreg Cyfesurynnau Cartesaidd
Gweithdy ar Sgiliau Astudio
Adnoddau Ar-lein Online Resources
Ffwythiant Dosraniad Cronnus F(x)
Ffwythiannau Cyfansawdd a Gwrthdro
Public Notice Hysbysiad Cyhoeddus
Evaluation Titration Defnyddiwch y cyflwyniad PowerPoint rhyngweithiol hwn i werthu’r agweddau hyn ar Ditradu Cywirdeg mewn Titradau Dull Titradu Dethol.
Logarithmau 2 Logarithms /adolygumathemateg.
Regression.
Exponential and Logarithmic Functions
Scatter Plots and Equations of Lines
Comparing Linear, Exponential, and Quadratic Functions.
1. BETH YDYW? WHAT IS IT? Mae cyfrifoldeb ar bob sefydliad sy’n gweithio gyda phlant ac oedolion i ddiogelu’r plant a’r oedolion hynny. Y ffordd.
Mathau o Gyfresi Types of /adolygumathemateg.
Graph 2x + 4y = 16 by finding the x and y intercepts.
MATH 2311 Section 5.5.
The Distance to the Horizon
2.6 Draw Scatter plots & Best Fitting Lines
Braslunio Cromlinau Curve /adolygumathemateg.
Ymholiad Gwaith Maes TGAU
Blynyddoedd Cynnar ABCh Cyfnod Sylfaen Gwers 1
Sleid ar gyfer athrawon YN UNIG
Calculating the Number of Moles in a Solution
Integrated Math 3 – Mod 3 Test Review
Fformiwlâu Adiad Trigonometreg
Fectorau /adolygumathemateg.
Cyfres Geometrig Geometric /adolygumathemateg.
Gwerthoedd Arbennig Sin, Cos a Tan
Prosiect Sgiliau Hanfodol Hyblyg
MATH 2311 Section 5.5.
Presentation transcript:

Logarithmau 3 Logarithms 3 @mathemateg /adolygumathemateg

Ffitio Cromlinau / Curve Fitting O gael gwerthoedd ar gyfer 𝑥 ag 𝑦, efallai o arbrawf, mae’n bosib defnyddio logarithmau i weld os yw’r data’n ffitio perthynas o’r ffurf 𝑦=𝑎 𝑥 𝑛 neu 𝑦=𝑘 𝑏 𝑥 . Given values for 𝑥 and 𝑦, possibly from an experiment, it is possible to use logarithms to see if the data fits a relationship of the form 𝑦=𝑎 𝑥 𝑛 or 𝑦=𝑘 𝑏 𝑥 .

Ffitio Cromlinau / Curve Fitting (1) Ydi’r data o’r ffurf / Is the data of the form 𝑦=𝑎 𝑥 𝑛 ? 𝑦=𝑎 𝑥 𝑛 log 𝑦 = log (𝑎 𝑥 𝑛 ) Cymryd log (bôn 10) o bob ochr / Taking logs (base 10) of each side log (𝑦) = log (𝑎) + log ( 𝑥 𝑛 ) Rheolau logarithm / Rules of logarithms log (𝑦) = log (𝑎) +𝑛 log (𝑥) Rheolau logarithm / Rules of logarithms log (𝑦) =𝑛 log (𝑥) + log (𝑎) Ail-drefnu / Re-arranging Yn cymharu efo / comparing with 𝑦=𝑚𝑥+𝑐, byddai plotio log (𝑥) yn erbyn log (𝑦) yn rhoi llinell syth efo graddiant 𝑛 a rhyngdoriad–𝑦 log (𝑎) / plotting log (𝑥) against log (𝑦) would give a straight line with gradient 𝑛 and 𝑦–intercept log (𝑎) . Model polynomial / A polynomial model

Ffitio Cromlinau / Curve Fitting Enghraifft / Example Casglwyd data mewn arbrawf am newidynnau 𝑥 ag 𝑦. Defnyddiwch y gwerthoedd data o’r tabl i ysgrifennu’r berthynas rhwng 𝑥 ag 𝑦 yn y ffurf 𝑦=𝑎 𝑥 𝑛 . Data was collected in an experiment about the variables 𝑥 and 𝑦. Use the data values in the table to write the relationship between 𝑥 and 𝑦 in the form 𝑦=𝑎 𝑥 𝑛 . Gallwn ffurfio’r tabl isod i dangos gwerthoedd log (𝑥) a log (𝑦) , ac yna’u plotio ar ddiagram gwasgariad. We can form the following table to show the values of log (𝑥) and log (𝑦) , and then plot them on a scatter diagram. 𝒙 10 20 30 40 50 𝑦 158 549 1140 1913 2858 log (𝒙) 1 1.3010 1.4771 1.6021 1.6990 log (𝑦) 2.1987 2.7396 3.0569 3.2817 3.4561

Ffitio Cromlinau / Curve Fitting log (𝒙) 1 1.3010 1.4771 1.6021 1.6990 log (𝑦) 2.1987 2.7396 3.0569 3.2817 3.4561 log (𝑦) Graddiant y graff yw tua / The gradient of the graph is approximately 3.6÷2=1.8. Rhyngdoriad–𝑦 y graff yw tua / The 𝑦–intercept of the graph is approximately 0.4. Yn cymharu efo / Comparing with log (𝑦) =𝑛 log (𝑥) + log (𝑎) mae gennym / we have log (𝑦) =1.8 log 𝑥 +0.4 . Felly / Therefore 𝑎= 10 0.4 𝑎=2.51 (i 2 l.d. / to 2 d.p.). Yn cymharu efo / Comparing with 𝑦=𝑎 𝑥 𝑛 mae gennym y model / we have the model 𝑦=2.51 𝑥 1.8 . Llinell ffit orau / Line of best fit 4−0.4=3.6 2−0=2 log (𝑥)

Ffitio Cromlinau / Curve Fitting (2) Ydi’r data o’r ffurf / Is the data of the form 𝑦=𝑘 𝑏 𝑥 ? 𝑦=𝑘 𝑏 𝑥 log 𝑦 = log (𝑘 𝑏 𝑥 ) Cymryd log (bôn 10) o bob ochr / Taking logs (base 10) of each side log (𝑦) = log (𝑘) + log ( 𝑏 𝑥 ) Rheolau logarithm / Rules of logarithms log (𝑦) = log (𝑘) +𝑥 log (𝑏) Rheolau logarithm / Rules of logarithms log (𝑦) =𝑥 log (𝑏) + log (𝑘) Ail-drefnu / Re-arranging Yn cymharu efo / comparing with 𝑦=𝑚𝑥+𝑐, byddai plotio 𝑥 yn erbyn log (𝑦) yn rhoi llinell syth efo graddiant log (𝑏) a rhyngdoriad–𝑦 log (𝑘) / plotting 𝑥 against log (𝑦) would give a straight line with gradient log (𝑏) and 𝑦–intercept log (𝑘) . Model ebonyddol / An exponential model

Ffitio Cromlinau / Curve Fitting Enghraifft / Example Casglwyd data mewn arbrawf am newidynnau 𝑥 ag 𝑦. Defnyddiwch y gwerthoedd data o’r tabl i ysgrifennu’r berthynas rhwng 𝑥 ag 𝑦 yn y ffurf 𝑦=𝑘 𝑏 𝑥 . Data was collected in an experiment about the variables 𝑥 and 𝑦. Use the data values in the table to write the relationship between 𝑥 and 𝑦 in the form 𝑦=𝑘 𝑏 𝑥 . Gallwn ffurfio’r tabl isod i dangos gwerthoedd 𝑥 a log (𝑦) , ac yna’u plotio ar ddiagram gwasgariad. We can form the following table to show the values of 𝑥 and log (𝑦) , and then plot them on a scatter diagram. 𝒙 2 4 6 8 10 𝑦 9 53 306 1,761 10,145 𝒙 2 4 6 8 10 log (𝑦) 0.9542 1.7243 2.4857 3.2458 4.0063

Ffitio Cromlinau / Curve Fitting 𝒙 2 4 6 8 10 log (𝑦) 0.9542 1.7243 2.4857 3.2458 4.0063 log (𝑦) Graddiant y graff yw tua / The gradient of the graph is approximately 3.8÷10=0.38. Rhyngdoriad–𝑦 y graff yw tua / The 𝑦–intercept of the graph is approximately 0.2. Yn cymharu efo / Comparing with log (𝑦) =𝑥 log (𝑏) + log (𝑘) mae gennym / we have log (𝑦) =0.38𝑥+0.2. Felly / Therefore 𝑏= 10 0.38 𝑘= 10 0.2 𝑏=2.40 (i 2 l.d. / to 2 d.p.). 𝑘=1.58 (i 2 l.d. / to 2 d.p.) Yn cymharu efo / Comparing with 𝑦=𝑘 𝑏 𝑥 mae gennym y model / we have the model 𝑦=1.58 ×2.4 𝑥 . Llinell ffit orau / Line of best fit 4−0.2=3.8 10−0=10 𝑥