Volume 21, Issue 8, Pages (August 2013)

Slides:



Advertisements
Similar presentations
Volume 18, Issue 2, Pages (February 2010)
Advertisements

Volume 18, Issue 6, Pages (June 2010)
Volume 25, Issue 2, Pages (February 2017)
A Corkscrew Model for Dynamin Constriction
Sebastian Meyer, Raimund Dutzler  Structure 
Volume 13, Issue 12, Pages (December 2005)
Hierarchical Binding of Cofactors to the AAA ATPase p97
Volume 21, Issue 4, Pages (April 2013)
Volume 15, Issue 4, Pages (April 2007)
Volume 21, Issue 9, Pages (September 2013)
The Crystal Structure of the Human Hepatitis B Virus Capsid
Volume 21, Issue 1, Pages (January 2013)
Cryo-EM Study of the Pseudomonas Bacteriophage φKZ
Devrani Mitra, Xiaojing Yang, Keith Moffat  Structure 
Barbie K. Ganser-Pornillos, Anchi Cheng, Mark Yeager  Cell 
Volume 14, Issue 3, Pages (March 2006)
Volume 21, Issue 10, Pages (October 2013)
Volume 19, Issue 1, Pages (January 2011)
Subunit Folds and Maturation Pathway of a dsRNA Virus Capsid
Volume 18, Issue 2, Pages (February 2010)
Volume 130, Issue 6, Pages (September 2007)
Volume 26, Issue 2, Pages e3 (February 2018)
Volume 11, Issue 11, Pages (November 2003)
West Nile Virus Core Protein
Volume 14, Issue 6, Pages (June 2006)
Rong Shi, Laura McDonald, Miroslaw Cygler, Irena Ekiel  Structure 
Volume 16, Issue 9, Pages (September 2008)
Structures of Minimal Catalytic Fragments of Topoisomerase V Reveals Conformational Changes Relevant for DNA Binding  Rakhi Rajan, Bhupesh Taneja, Alfonso.
Volume 18, Issue 6, Pages (June 2010)
Solution and Crystal Structures of a Sugar Binding Site Mutant of Cyanovirin-N: No Evidence of Domain Swapping  Elena Matei, William Furey, Angela M.
Volume 13, Issue 8, Pages (August 2005)
Volume 26, Issue 2, Pages e3 (February 2018)
Volume 16, Issue 8, Pages (August 2008)
Volume 22, Issue 6, Pages (June 2014)
Volume 20, Issue 10, Pages (October 2012)
Volume 14, Issue 1, Pages (January 2006)
Volume 57, Issue 3, Pages (February 2015)
Anna Hagmann, Moritz Hunkeler, Edward Stuttfeld, Timm Maier  Structure 
Volume 17, Issue 11, Pages (November 2009)
Volume 16, Issue 8, Pages (August 2008)
Daniel Hoersch, Tanja Kortemme  Structure 
Volume 13, Issue 12, Pages (December 2005)
Volume 17, Issue 6, Pages (June 2009)
Volume 16, Issue 10, Pages (October 2008)
Crystal Structure of Group II Chaperonin in the Open State
Volume 24, Issue 8, Pages (August 2016)
A Corkscrew Model for Dynamin Constriction
Volume 25, Issue 9, Pages e3 (September 2017)
West Nile Virus Core Protein
Volume 16, Issue 3, Pages (March 2008)
Volume 14, Issue 4, Pages (April 2006)
Volume 139, Issue 4, Pages (November 2009)
Volume 52, Issue 3, Pages (November 2013)
Volume 34, Issue 3, Pages (May 2009)
Neali Armstrong, Eric Gouaux  Neuron 
Volume 14, Issue 12, Pages (December 2006)
Robo1 Forms a Compact Dimer-of-Dimers Assembly
Volume 20, Issue 8, Pages (August 2012)
Crystal Structure of Group II Chaperonin in the Open State
Volume 21, Issue 10, Pages (October 2013)
Jue Wang, Jia-Wei Wu, Zhi-Xin Wang  Structure 
Volume 13, Issue 10, Pages (October 2005)
Volume 13, Issue 5, Pages (May 2005)
The AXH Domain Adopts Alternative Folds
Volume 14, Issue 3, Pages (March 2006)
Structure of the Oxygen Sensor in Bacillus subtilis
Volume 13, Issue 5, Pages (May 2005)
Petra Hänzelmann, Hermann Schindelin  Structure 
Volume 20, Issue 8, Pages (August 2012)
Volume 25, Issue 9, Pages e3 (September 2017)
Presentation transcript:

Volume 21, Issue 8, Pages 1406-1416 (August 2013) Assembly-Directed Antivirals Differentially Bind Quasiequivalent Pockets to Modify Hepatitis B Virus Capsid Tertiary and Quaternary Structure  Sarah P. Katen, Zhenning Tan, Srinivas Reddy Chirapu, M.G. Finn, Adam Zlotnick  Structure  Volume 21, Issue 8, Pages 1406-1416 (August 2013) DOI: 10.1016/j.str.2013.06.013 Copyright © 2013 Elsevier Ltd Terms and Conditions

Structure 2013 21, 1406-1416DOI: (10.1016/j.str.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 1 Capsid Structure in the Presence of AT-130 (A) A hepatitis B capsid structure showing quasiequivalence and asymmetric unit. The A/B dimer (red and blue respective monomers) forms icosahedral 5-fold, while the C/D dimer (yellow and green respective monomers) forms icosahedral 3-fold. Color scheme is maintained for remaining figures. (B) Electron micrograph of Cp149 assembly with AT-130 showing morphologically normal 35 nm capsids. (C) +AT-130 crystal structure (red) overlaid with apo structure (blue) showing drug-induced capsid expansion. Left: exterior of overlaid structures. Right: cross-section of overlaid structures. Icosahedral symmetry axes are indicated. See also Figure S2. Structure 2013 21, 1406-1416DOI: (10.1016/j.str.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 2 C-alpha Displacement of Overlaid Dimeric Subunits (A) Displacement of the C-alphas in the A/B dimer from residues 1–139, showing regions of tertiary structural change. Dimers from the +AT-130 structure were overlaid on the equivalent dimers from 1QGT (Wynne et al., 1999) to minimize the rmsd of the dimer. Purple bars at the top and bottom of the panel indicate helical regions (as labeled in Figure S3). (B) Displacement of the C-alphas in the C/D dimer, overlaid and displayed as described above. See also Figure S3. Structure 2013 21, 1406-1416DOI: (10.1016/j.str.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 3 Tertiary and Quaternary Structural Changes in the HBV Capsid upon AT-130 Binding (A) An A/B dimer superposition showing 4.0 Å upward movement as a rigid body. All structures in the figure are overlaid in the context of the complete +AT-130 and 1QGT capsids; the apo structure is shown in gray, +AT-130 in color. (B) A 90° rotation of the A/B dimer more clearly shows the out-of-register alignment of the spike helices. (C) C-monomer superposition showing unraveling and displacement of the spike. Ascending and descending helices marked with arrows. (D) D-monomer superposition showing skewing of the ascending helix and kink in the descending helix. Ascending and descending helices marked as in (C). See also Movies S1 and S2 Structure 2013 21, 1406-1416DOI: (10.1016/j.str.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 4 AT-130 Binding in the Promiscuous Pocket at the Base of the Dimer (A) AT-130 cis isomer (purple) and HAP1 (cyan) molecular models shown overlapping in the AT-130 density in the C-subunit, the preferred location for HAP1 (Bourne et al., 2006). The AT-130 density (purple) is contoured at 1.5σ (Figures S4C and S4D). (B) AT-130 density is strongest at the base of the B-subunit (Figure S4A). (C) Weaker but clearly visible AT-130 density in the equivalent pocket in C. (D) An overview of AT-130 binding sites. AT-130 binds in both the B/C quasiequivalent binding pocket (site 1) and the C/D pocket (site 2) but favors site 1. See also Figure S4 and Movie S3. Structure 2013 21, 1406-1416DOI: (10.1016/j.str.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 5 HAP-Resistant Capsid Protein Mutant Is Insensitive to AT-130 (A) A valine residue (yellow sticks/spheres) makes up part of the assigned AT-130 (purple sticks/spheres) binding site. (B) The V124W mutation (green sticks/spheres) partially occludes the proposed binding site for AT-130. (C) Light scattering (in arbitrary units) of Cp149 assembly in 150 mM NaCl with AT-130. (D) Light scattering of Cp149-V124W assembly in 50 mM NaCl with AT-130. Structure 2013 21, 1406-1416DOI: (10.1016/j.str.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 6 Model of AT-130 as a Kinetic Effector of HBV Assembly through Subtle Conformational Changes (A) Schematic of HBV capsid structure showing the arrangement of the asymmetric unit on an icosahedral face. (B) Model of allosteric change with AT-130 binding; the quaternary upward motion of the A/B dimers is compensated for by tertiary conformational changes within the C/D dimers. (C) Proposed AT-130 mechanism of action. Normal virus assembly involves the packaging of the reverse transcriptase pregenomic RNA (RT-pgRNA) complex (Nassal, 2008); AT-130 binds to the capsid protein and induces subtle conformational changes that cause the formation of nuclei without the RT-pgRNA complex, leading to the formation of empty particles. See also Figure S5. Structure 2013 21, 1406-1416DOI: (10.1016/j.str.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions