Combine any like terms and write the resulting polynomial in descending order. 1) 6 + x – 9 + 5x2 + x = 5x2 + 2x – 3 2) 3x + 2x2 + 7 – 6x2 + 6x – 7 = – 4x2 + 9x Classify and find the degree of each polynomial. 3) 4x – 8 – Binomial – Degree = 1 4) x2 + 4x – 6 – Trinomial – Degree = 2
13.03 Adding and Subtracting Polynomials
Polynomials can be added or subtracted using one of two forms: horizontally or vertically. ( 3x2 + 4x + 2 ) + ( 5x2 – 6x + 7 ) or ( 3x2 + 4x + 2 ) + ( 5x2 – 6x + 7 ) The parentheses have to be removed using the Distributive Property: a( b + c ) = ab + ac. To do this place a 1 in front of the parentheses. Once the parentheses are removed, combine like terms and write the polynomial in descending order.
Add the following polynomials. ( 2x2 + 3x + 1 ) + ( 5x2 – 8x + 8 ) 1 ( 2x2 + 3x + 1 ) + 1 ( 5x2 – 8x + 8 ) 2x2 + 3x + 1 + 5x2 – 8x + 8 7x2 – 5x + 9 ( x2 + 2x + 6 ) + ( 3x2 + 4x – 8 ) 1 ( x2 + 2x + 6 ) + 1 ( 3x2 + 4x – 8 ) = x2 + 2x + 6 + 3x2 + 4x – 8 = _______________ 4x2 + 6x – 2
Subtract the following polynomials. ( 9x2 + 2x + 3 ) – ( 4x2 – 5x + 7 ) 1 ( 9x2 + 2x + 3 ) – 1 ( 4x2 – 5x + 7 ) 9x2 + 2x + 3 – 4x2 + 5x – 7 5x2 + 7x – 4 ( 6x2 + 4x + 9 ) – ( 2x2 – 4x – 1 ) 1 ( 6x2 + 4x + 9 ) – 1 ( 2x2 – 4x – 1 ) = 6x2 + 4x + 9 – 2x2 + 4x + 1 = _______________ 4x2 + 8x + 10
Try This: Add: ( x2 – 2x + 6 ) + ( 2x2 – 7x + 1 ) 1 ( x2 – 2x + 6 ) + 1 ( 2x2 – 7x + 1 ) x2 – 2x + 6 + 2x2 – 7x + 1 3x2 – 9x + 7 Subtract: ( 3x2 – 2x + 6 ) – ( 5x2 – 8x + 2 ) 1 ( 3x2 – 2x + 6 ) – 1 ( 5x2 – 8x + 2 ) 3x2 – 2x + 6 – 5x2 + 8x – 2 – 2x2 + 6x + 4